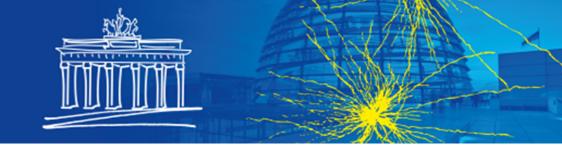



Friday, 7 July, 2023, 10:00 a.m. - 5:00 p.m.

I | Introductory Course

Chairs:



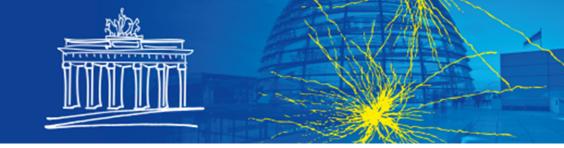



# W01 | Glial engineering and gliotechnologies: advanced materials, tools and approaches to unveil the role of glia in brain physiology, diseases and in social behavior

Chairs: Valentina Benfenati (Bologna, Italy); Maria Grazia Raucci (Napoli, Italy)

| 8:30 am  | W0101 | Gliotechnologies and materials interfaces to control intracellular calcium dynamics in astrocytes and their impact on neurons.<br>Valentina Benfenati (Bologna, Italy) |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:00 am  | W0102 | Dysfunctional astrocyte-neuron signaling in Major Depressive Disorder<br>Gertrudis Perea (MADRID, Spain)                                                               |
| 9:30 am  | W0103 | tba<br><b>Maria Rosa Antognazza</b> (Milano, Italy)                                                                                                                    |
| 10:00 am | W0104 | A paradigm shift: Bioengineering meets glial mechanobiology to explore new therapeutic avenues in central nervous system pathology<br>Ana Paula Pêgo (Porto, Portugal) |
| 10:30 am | W0105 | tba<br><b>Wolfgang Losert</b> (College Park, USA)                                                                                                                      |
| 11:00 am | W0106 | Computational genomics of astrocyte mosaics in Alzheimer's progression<br>Maurizio de Pitta (Toronto, Canada)                                                          |





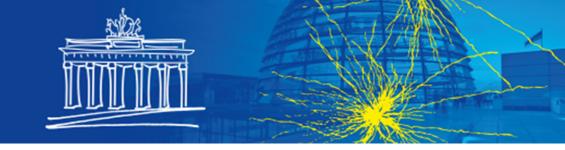

Saturday, 8 July, 2023, 12:15 p.m. - 12:30 p.m.

**Opening | Opening** 

Chairs:





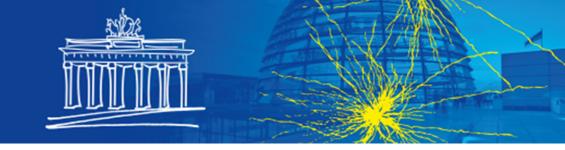

#### L01 | Plenary Lecture I: Freda Miller

Chairs: Magdalena Götz (Munich, Germany)

#### **Presentations:**

12:30 pm L0101 From Development to Repair - How Growth Factors and Stem Cells Build the Nervous System Freda Miller (Vancouver, Canada)



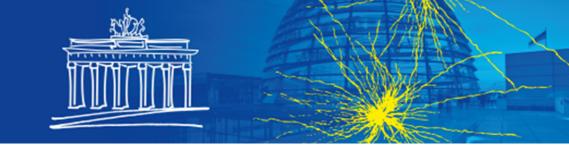



#### PS1 | Poster Session I

Chairs:

| riesenta | Fresentations. |                                                                                                                                                                                                          |  |  |
|----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1:30 pm  | T01-001A       | Role of <i>Etv5</i> in Schwann cell Development and Peripheral Nerve Injury<br>Lauren Belfiore (Toronto, Canada)                                                                                         |  |  |
| 1:31 pm  | T01-002A       | Jamming Transitions in Astrocytes and Glioblastoma Are Induced by Cell Density and Tension<br><b>Tim Hohmann</b> (Halle (Saale), Germany)                                                                |  |  |
| 1:32 pm  | T01-003A       | AQP4 as a possible drug target in treatment of stroke- beyond edema<br><b>Negar Zohoorian</b> (Oslo, Norway)                                                                                             |  |  |
| 1:33 pm  | T01-004A       | A synergy of laminin and strain-stiffening promotes directed migration of Schwann cells in hydrogels.<br>Flavia Millesi (Wien, Austria)                                                                  |  |  |
| 1:34 pm  | T01-005A       | In-Vitro Timelapse Imaging and Expansion Microscopy of Mitochondria within Primary Oligodendrocyte Progenitor Cells<br>Annika Haak (Bochum, Germany)                                                     |  |  |
| 1:35 pm  | T02-001A       | The spatiotemporal dynamics of microglia during human cortical development<br>David A. Menassa (Oxford, UK)                                                                                              |  |  |
| 1:36 pm  | T02-002A       | Highly proliferative seeding microglia progenitors shift their developmental program to acquire a mature phenotype in the postnatal hippocampus and cerebellum<br>Marta Pereira Iglesias (Bilbao, Spain) |  |  |
| 1:37 pm  | T02-003A       | Multicolor fate mapping demonstrates clonal expansion and functional heterogeneity of microglia after stroke<br><b>Majed Kikhia</b> (Berlin, Germany)                                                    |  |  |






| 1:38 pm | T02-004A | Stem-cell-like subpopulation of NG2 glia expands after ischemic injury<br><b>Tomas Knotek</b> (Prague, Czech Republic)                                                                                                                          |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:39 pm | T02-006A | GemC1 and McIdas have distinct roles in ependymal cell generation<br>Georgia Lokka (Patras, Greece)                                                                                                                                             |
| 1:40 pm | T02-007A | Injury primes mutation bearing astrocytes for dedifferentiation in later life<br>Holly Simpson Ragdale (London, UK)                                                                                                                             |
| 1:41 pm | T02-008A | Possible rescuing effects on aberrant oligodendroglial differentiation induced by elevated C21orf91 levels via myelin repair drugs: new window of opportunity for Down syndrome white matter restoration?<br>Laura Reiche (Düsseldorf, Germany) |
| 1:42 pm | T02-009A | Generation of human microglia-like cells derived from peripheral mononuclear blood cells.<br>Masi Almalki (Nottingham, UK)                                                                                                                      |
| 1:43 pm | T02-010A | PDGF signaling in OPCs is necessary for complete oligodendroglial occupation of the CNS<br>Sonia R. Mayoral (Providence, USA)                                                                                                                   |
| 1:44 pm | T03-001A | IRF2 dissociated from IRF2BP2 by Agmatine mediates transcriptional signaling leading to M2 phenotype microglia.<br>Jiwon Kim (Seoul, South Korea)                                                                                               |
| 1:45 pm | T03-002A | Calcium signaling and morphological heterogeneity in astrocytes<br>Kerstin Lenk (Graz, Austria)                                                                                                                                                 |
| 1:46 pm | T03-003A | Cell type-specific labelling of newly synthesized proteins by puromycin inactivation.<br>Florencia Cabrera-Cabrera (Tallinn, Estonia)                                                                                                           |
| 1:47 pm | T03-004A | Amyloid β modifies MYRF stability through PKC/GSK3β signaling to alter oligodendrocyte differentiation<br><b>Uxue Balantzategi</b> (Leioa, Spain)                                                                                               |
|         |          |                                                                                                                                                                                                                                                 |

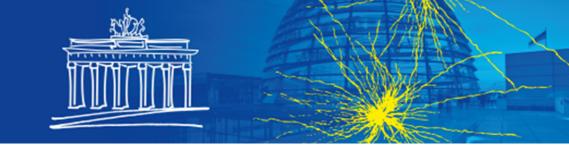




| 1:48 pm | T03-005A | 40 Hz Light Flicker Stimulation of Calcium Dynamics in Astrocytes<br>Aikaterini Konstantoulaki (Bologna, Italy)                                                                                                                                                                                       |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:49 pm | T03-006A | Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes<br>Roberta Fabbri (Bologna, Italy)                                                                                                                                                         |
| 1:50 pm | T03-007A | Selective extracellular miRNAs activate human microglia derived from induced pluripotent stem cells, thereby controlling their functional properties<br>Hannah Weidling (Berlin, Germany)                                                                                                             |
| 1:51 pm | T03-008A | Noradrenergic and purinergic cAMP signaling in astrocytes of the murine olfactory bulb<br>Jessica Sauer (Hamburg, Germany)                                                                                                                                                                            |
| 1:52 pm | T03-009A | Analysis of Local Intracellular Signaling in Astrocytes Using Two-Photon Holographic Microscopy<br><b>Mitsuhiro Morita</b> (Kobe, Japan)                                                                                                                                                              |
| 1:53 pm | T03-010A | Ca <sup>2+</sup> signals mediated by P2Y <sub>2</sub> receptors in stellate Schwann-like cells are localized about the ciliary pocket and required for maintenance of the cells and their recruitment to vibrissal mechanoreceptors in young adult rats.<br>Hiromi Takahashi-Iwanaga (Sapporo, Japan) |
| 1:54 pm | T05-001A | Human post-mortem organotypic brain slice cultures: a tool to study glia pathology and test therapies for leukodystrophies<br>Bonnie C. Plug (Amsterdam, Netherlands)                                                                                                                                 |
| 1:55 pm | T05-002A | Role of microglial CD22 in Alzheimer's disease<br><b>Marina Jendrach</b> (Berlin, Germany)                                                                                                                                                                                                            |
| 1:56 pm | T05-003A | CCL21-CCR7 PATHWAY INDUCE MICROGLIAL REACTIVITY AND NEURODEGENERATION IN A NOVEL 3,4-DIHYDROXYPHENYLACETOADEHYDE INDUCED<br>PARKINSON'S DISEASE MODEL<br><b>Felipe S. Leser</b> (Paris, France)                                                                                                       |
| 1:57 pm | T05-004A | The mechanisms linking amyloid-β-driven disruption of the astrocytic endolysosomal system to the synapse loss<br><b>Katarzyna M. Grochowska</b> (Hamburg, Germany)                                                                                                                                    |



| 1:58 pm | T05-005A | The role of astrocytes in Parkinson's disease pathogenesis in GBA N370S hiPSC-derived astrocyte mono-cultures and neuron-astrocyte co-cultures<br>Naroa Ibarra-Aizpurua (Oxford, UK)        |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:59 pm | T05-006A | Silencing of phagocytic receptor MERTK in astrocytes alleviates Tau pathology in rodent models of primary Tauopathies.<br>Nathan Louvel (Fontenay-aux-Roses, France)                        |
| 2:00 pm | T05-007A | The deletion of Galectin-3 Reduces the Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon in two models of peripheral inflammation.<br>Rocío M. de Pablos (Sevilla, Spain) |
| 2:01 pm | T05-008A | VEGF effect on microglia in Alzheimer's disease<br><b>Priscille de Gea</b> (Lyon, France)                                                                                                   |
| 2:02 pm | T05-009A | TREM2 agonistic antibodies boosts microglial responses to amyloid in human induced pluripotent stem cell-derived microglia<br>Elina Svensson (London, UK)                                   |
| 2:03 pm | T05-010A | Cell autonomous microglial reactivity in VCP-related ALS involving lysosomal and immune dysfunction activates STAT2 signalling in motor neurons<br>Ben Clarke (London, UK)                  |
| 2:04 pm | T05-011A | Oxytocin modulates microglial activation in Alzheimer's disease models<br>Maria Clara Selles Japas (New York, USA)                                                                          |
| 2:05 pm | T05-012A | Hydrophilic saffron extract decreases microglial activation and neuro-protects in a glaucoma model<br>Jose A Matamoros (Madrid, Spain)                                                      |
| 2:06 pm | T05-013A | Is vimentin an overshadowed clue for understanding Parkinson's disease pathology?<br>Abdulkhalek Dakhel (Uppsala, Sweden)                                                                   |
| 2:07 pm | T05-014A | Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism<br>Chiara Beretta (Uppsala, Sweden)                                               |
| 2:08 pm | T05-015A | Implication of neuronal and microglial P2X4 in ALS pathogenesis<br>Sara Carracedo (Bordeaux, France)                                                                                        |




| 2:09 pm | T05-016A | Transgenic expression of the human endogenous retrovirus type-W envelope protein leads to activated and differentially polarized glial cell populations<br>Joel Gruchot (Düsseldorf, Germany)        |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:10 pm | T05-017A | The neurovascular unit repair process in an animal model of Alzheimer's Disease<br><b>Stephanie L. Taylor</b> (Bonn, Germany)                                                                        |
| 2:11 pm | T05-018A | Interplay between pro-inflammatory cytokines and chromatin-remodeling enzymes in CNS demyelination and repair<br>Xinda Zhao (Mainz, Germany)                                                         |
| 2:12 pm | T05-019A | Mitochondrial networks reveal sex-specific microglial response to stress and injury<br>Margaret Maes (Klosterneuburg, Austria)                                                                       |
| 2:13 pm | T05-020A | SORCS2 protects the brain from stress imposed by amyloid burden in mouse model of Alzheimer disease<br>Vanessa Schmidt (Berlin, Germany)                                                             |
| 2:14 pm | T05-021A | Impact of iPSC-derived microglial exosomes on neurons: role of TREM2 and implication in Alzheimer's Disease<br>Foteini Vasilopoulou (London, UK)                                                     |
| 2:15 pm | T05-022A | A human(ized) <i>in vitro</i> model to study microglia in neurodegeneration<br><b>Lena Erlebach</b> (Tuebingen, Germany)                                                                             |
| 2:16 pm | T05-023A | 6'-Sialyllactose ameliorates inflammation-induced hearing loss in neomycin hearing loss mouse model<br>Tawfik Abou Assale (Bonn, Germany)                                                            |
| 2:17 pm | T05-024A | In-vitro and in-vivo evidence supporting the therapeutic effect of extracellular vesicles derived from mesenchymal stem cells in amyotrophic lateral sclerosis <b>Marco Milanese</b> (Genova, Italy) |
| 2:18 pm | T05-025A | Elucidating the neuroprotective mechanisms of the APOE3 Christchurch mutation in Alzheimer's Disease<br>Sarah A. Naguib (New York, USA)                                                              |
| 2:19 pm | T05-026A | Lysosome status as a key driver of microglial phenotype and responses to aging<br>Fanny Etienne (Los Angeles, USA)                                                                                   |



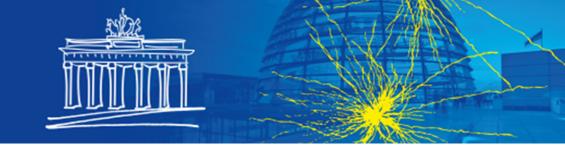
| 2:20 pm | T05-027A | Safflower Leaf Exerts Neuroprotective Effect Through Inhibiting Excessive Astrocyte Activation in APP/PS1 Mice<br>Tiantian Zhang (Xi'an, Shaanxi, China)                |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:21 pm | T05-028A | Glial p15INK4B in ocular pressure injury: marker of senescence?<br>Gayathri Karthik (Singapore, Singapore)                                                              |
| 2:22 pm | T05-029A | The role of Nedd4 uniquitin protein ligases in the dopaminergic system and their crosstalk withα-synuclein <i>in vivo</i> <b>James A. Conway</b> (Plymouth, UK)         |
| 2:23 pm | T05-030A | Functional bias and divergent signaling cascades of amyloid beta variants for formyl peptide receptors in glia and immune cells<br>Lukas Busch (Zweibrücken, Germany)   |
| 2:24 pm | T06-001A | Role of microglial metabolic reprogramming in obesity<br>Agnes Nadjar (Bordeaux, France)                                                                                |
| 2:25 pm | T06-002A | Metabolic control of neural stem cells from people with progressive multiple sclerosis<br>Rosana-Bristena lonescu (Cambridge, UK)                                       |
| 2:26 pm | T06-003A | Astrocytic lactate in the lateral hypothalamus sustains orexinergic neuronal activity and promotes sleep/wake cycle<br>Alice Braga (London, UK)                         |
| 2:27 pm | T06-004A | Investigation of cell-specific cerebral glucose uptake combining fluorescence lifetime imaging and kinetic modelling<br>Afroditi Eleftheriou (Zurich, Switzerland)      |
| 2:28 pm | T06-005A | Astrocyte-specific knockout of proglycolytic enzyme PFKFB3 causes metabolic remodeling and behavioral alterations in mouse <b>Paula Alonso-Batán</b> (Salamanca, Spain) |
| 2:29 pm | T06-006A | Metabolic and behavioral alterations in astrocyte-specific CPT1A knockout mice<br>Marina Garcia-Macia (Salamanca, Spain)                                                |
| 2:30 pm | T06-007A | Metabolic interactions in the nervous system under suboptimal conditions<br>Stefanie Schirmeier (Dresden, Germany)                                                      |



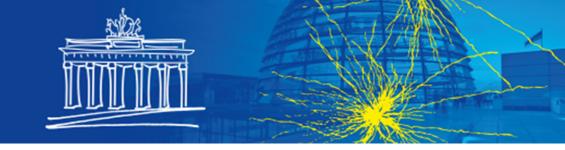


| 2:31 pm | T06-008A | Rewiring of fatty acid synthesis in phagocytes and oligodendrocytes regulates central nervous system remyelination <b>Sanne G. Verberk</b> (Diepenbeek, Belgium)             |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:32 pm | T06-009A | Developmental programming of obesity in a mouse model of encephalopathy of prematurity<br>Sihao Diao (Paris, France)                                                         |
| 2:33 pm | T06-010A | Astrocytic GLUT1 ablation improves systemic glucose metabolism and memory resilience through enhanced insulin-stimulated ATP release <b>Maite Solas</b> (Pamplona, Spain)    |
| 2:34 pm | T06-011A | Metabolic interplay between neuroblasts and their glial niche in the growing <i>Drosophila</i> larva<br>Ioannis Nellas (Dresden, Germany)                                    |
| 2:35 pm | T06-012A | Endocannabinoid signaling to astrocytes in the hypothalamus modulates feeding behavior and energy metabolism.<br>Daniela Herrera Moro Chao (Minneapolis, USA)                |
| 2:36 pm | T08-001A | Mbp translocates to the nucleus in oligodendroglia to interact with DNA<br>Karl Carlström (Stockholm, Sweden)                                                                |
| 2:37 pm | T08-002A | Human oligodendrocytes development in the second-trimester stage revealed by single-nuclei RNA-seq and single-nuclei ATAC-seq<br>Fabio Baldivia Pohl (Stockholm, Sweden)     |
| 2:38 pm | T08-003A | Study of epigenetic markers in the cerebrospinal fluid of patients with spinal cord injury<br>Irina Baichurina (Kazan, Russia)                                               |
| 2:39 pm | T08-004A | Tle4 prevents premature Schwann cell differentiation via a negative feedback loop with Sox10.<br><b>Tim Aberle</b> (Erlangen, Germany)                                       |
| 2:40 pm | T08-005A | Histone-ubiquitinating E3 ligase subunit Rnf40 influences oligodendrocyte differentiation and myelination in the postnatal spinal cord<br>Hannah M. Wüst (Erlangen, Germany) |
| 2:41 pm | T08-006A | The role of Rnf40 in mouse oligodendrocyte lineage cells during embryonic development<br>Verena Dehm (Erlangen, Germany)                                                     |






| 2:42 pm | T08-007A | Cellular heterogeneity in the development & progression of multiple sclerosis brain lesions<br>Mirjam Koster (Groningen, Netherlands)                             |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:43 pm | T08-008A | siRNA-guided gene silencing in rat primary microglia maintained in defined vs serum-supplemented culture medium<br>Melania Magercu (Bucharest, Romania)           |
| 2:44 pm | T08-009A | Transcriptomics analysis of developing Bergmann glia in anterior and posterior lobules<br>Chiara Di Pietro (Monterotondo Scalo (RM), Italy)                       |
| 2:45 pm | T08-010A | The role of Dusp15 as a regulator of oligodendrocyte differentiation and developmental CNS myelination in mice <b>Jana Wallberg</b> (Erlangen, Germany)           |
| 2:46 pm | T09-001A | Ca <sup>2+</sup> -dependent modulation of astrocytic gap junctional coupling upon brief metabolic stress<br>Sara Eitelmann (Düsseldorf, Germany)                  |
| 2:47 pm | T09-002A | A barrier attenuation of the glia limitans superficialis in the rat medial prefrontal cortex after sciatic nerve injury <b>Petr Dubovy</b> (Brno, Czech Republic) |
| 2:48 pm | T09-003A | Impact of myelin phagocytosis on myeloid cells and its effect on human oligodendrocytes<br>Laura E. Schmitz-Gielsdorf (Münster, Germany)                          |
| 2:49 pm | T09-004A | Protective effects of astrocytes in reducing pericyte damage and improving cerebral blood flow in stroke mice <b>Gulnaz Begum</b> (Pittsburgh, USA)               |
| 2:50 pm | T09-005A | Retinal histological changes in a Dravet syndrome knock-in mouse model<br>Juan J. Salazar (Madrid, Spain)                                                         |
| 2:51 pm | T09-006A | Retinal glial changes in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis<br>Ana I. Ramirez (Madrid, Spain)                                                  |
| 2:52 pm | T09-007A | Astrocytic chloride is brain state dependent and modulates inhibitory transmission<br>Verena Untiet (Copenhagen N, Denmark)                                       |






| 2:53 pm | T09-008A | Characterisation of extracellular vesicles derived from reactive and quiescent human astrocytes<br><b>Katherine White</b> (Nottingham, UK)                                                            |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:54 pm | T09-009A | Molecular and functional dissection of lesion-remote astrocyte reactivity states linked to regenerative plasticity, neural repair and inflammation after CNS injury Sarah McCallum (Los Angeles, USA) |
| 2:55 pm | T10-001A | Profiling the chromatin landscape of adult human oligodendroglia using single-cell epigenomics<br><b>Mukund Kabbe</b> (Solna, Sweden)                                                                 |
| 2:56 pm | T10-002A | MorphOMICs: a new algorithm to unravel region- and sex-dependent microglia morphological plasticity in health and disease<br>Gloria Colombo (Lausanne, Switzerland)                                   |
| 2:57 pm | T10-003A | Hexanucleotide repeat expansions in C9orf72 alter microglial responses and prevent a coordinated glial reaction in ALS<br>Pegah Masrori (Leuven, Belgium)                                             |
| 2:58 pm | T10-004A | Contribution of astrocyte subtypes in the human dentate gyrus to the pathology of temporal lobe epilepsy<br>Chiara Lötzsch (Erlangen, Germany)                                                        |
| 2:59 pm | T10-005A | Assessing the functional role of niche astrocytes in regulation of adult hippocampal neurogenesis<br><b>Evangelia Masouti</b> (Erlangen, Germany)                                                     |
| 3:00 pm | T10-006A | A molecularly-defined non-redundant subpopulation of OPCs controls the generation of myelinating oligodendrocytes during postnatal development.<br>Shayan Moghimyfiroozabad (Paris, France)           |
| 3:01 pm | T10-007A | Resolving the morpho-functional responses of locally-constrained retinal microglia with <i>morphOMICs</i><br>Ryan John Cubero (Klosterneuburg, Austria)                                               |
| 3:02 pm | T10-008A | The generation of morphologically and functionally distinct human astrocyte subtypes to uncover astrocyte shape-function relationships <i>in vitro</i><br>Kelly O'Toole (London, UK)                  |
| 3:03 pm | T10-009A | Tracking heterogeneity and morphology of microglia after transient depletion and repopulation<br><b>Zuzanna M. Luczak-Sobotkowska</b> (Warsaw, Poland)                                                |



| 3:04 pm | T10-010A                                                                                        | Neurodevelopmental Origin of Cortical Satellite Cells.<br>Edson Rodrigues (Montpellier, France)                                                                                             |
|---------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:05 pm | T10-011A                                                                                        | Towards modulating human microglial subtypes in disease: developing a pharmacological approach to polarize microglia in a targeted fashion <b>Verena Claudia Haage</b> (New York City, USA) |
| 3:06 pm | T10-012A                                                                                        | Cortical astrocytes are generated from pallial and subpallial progenitors in the developing mouse brain <b>Karine Loulier</b> (Montpellier, France)                                         |
| 3:07 pm | T10-013A                                                                                        | Exploring astrocyte diversity using multi-omic single-nucleus sequencing<br>Michael R. O'Dea (New York, USA)                                                                                |
| 3:08 pm | T10-014A                                                                                        | Astrocyte diversity across mammals: a comparative analysis on distribution and single-cell morphology<br>Caterina Ciani (Trieste, Italy)                                                    |
| 3:09 pm | T10-015A                                                                                        | Microglial surveillence and injury response are controlled by regionally modulated signaling pathways<br>Mark B. Stoessel (Rochester, USA)                                                  |
| 3:10 pm | T11-001A                                                                                        | Functional heterogeneity of astrocytes in the CA1 hippocampus<br>Darren Clarke (Montréal, Canada)                                                                                           |
| 3:11 pm | T11-002A                                                                                        | Synapses and Ca <sup>2+</sup> activity in oligodendrocyte precursor cells predict where myelin sheaths form <b>Jiaxing Li</b> (Portland, USA)                                               |
| 3:12 pm | T11-003A                                                                                        | Quantification of intracellular Na <sup>+</sup> in hippocampal astrocytes and neurons employing rapidFLIM <b>Jan Meyer</b> (Duesseldorf, Germany)                                           |
| 3:13 pm | T11-004A                                                                                        | Hypothalamic tanycytes transduce temperature sensing to the inhibition of food intake<br>Marco Benevento (Wien, Austria)                                                                    |
| 3:14 pm | T11-005A                                                                                        | Catching active Astrocyte Ensembles: astrocytic ensembles shape goal-directed behavior in the Nucleus Accumbens<br>Irene Serra (Madrid, Spain)                                              |
|         | 3:05 pm<br>3:06 pm<br>3:07 pm<br>3:08 pm<br>3:09 pm<br>3:10 pm<br>3:11 pm<br>3:12 pm<br>3:13 pm | 3:05 pmT10-011A3:06 pmT10-012A3:07 pmT10-013A3:08 pmT10-014A3:09 pmT10-015A3:10 pmT11-001A3:11 pmT11-002A3:12 pmT11-003A3:13 pmT11-004A                                                     |



| 3:15 pm | T11-006A | Astrocyte Sema3c in neurodevelopment and Rett Syndrome<br><b>Krissy Lyon</b> (San Diego, USA)                                                                   |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:16 pm | T11-007A | Contribution of astrocytes to synapse formation in newly generated neurons in the adult hippocampus<br>Nicholas Chalmers (Erlangen, Germany)                    |
| 3:17 pm | T11-008A | Astroglial swelling mediated by accumulation of non-excitatory amino acids aggravates hypoxic neuronal injury<br>Iris Álvarez-Merz (Madrid, Spain)              |
| 3:18 pm | T11-009A | Impact of AMPA receptors in NG2 glia on signal transmission in the hippocampus and cerebellum <b>Dario Tascio</b> (Bonn, Germany)                               |
| 3:19 pm | T11-010A | Mechanisms of microglial D-serine mediated synaptic loss after traumatic brain injury (TBI)<br>Dena Arizanovska (Miami, USA)                                    |
| 3:20 pm | T11-011A | Heterogeneity in microglial morphodynamics regulation across the inactive period<br>Kassandre Combet (Lyon, France)                                             |
| 3:21 pm | T11-012A | Deciphering the role of an astrocytic IncRNA in age-associated cognitive diseases<br>Sophie Schröder (Göttingen, Germany)                                       |
| 3:22 pm | T11-013A | Astrocytic Ca <sup>2+</sup> dysfunctions in Major Depressive Disorder<br>Candela González Arias (Madrid, Spain)                                                 |
| 3:23 pm | T11-014A | Developmental cell death of lineage-related interneurons and oligodendroglia impacts prefrontal cortex function<br>Hasni Khelfaoui (Paris, France)              |
| 3:24 pm | T11-015A | Developmental cell death of lineage-related interneurons and oligodendroglia is required for cognitive flexibility in mice<br>Cristobal Ibaceta (Paris, France) |
| 3:25 pm | T11-016A | A high-resolution in vivo drug-screen in zebrafish to investigate how myelinated axons grow in diameter.<br><b>Maria Eichel-Vogel</b> (Edinburgh, UK)           |



| 3:26 pm | T11-017A | A role for the Post-Synaptic Density Protein PSD-95 in CNS Myelination<br>Mary-Amélie Masson (Paris, France)                                                                                       |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:28 pm | T11-019A | Nonapoptotic caspase activity regulates complement-dependent synaptic phagocytosis by microglia<br>Megumi Andoh (Tokyo, Japan)                                                                     |
| 3:29 pm | T11-020A | PDE4B as a key regulator of out of control microglia<br><b>Ben Rombaut</b> (Diepenbeek, Belgium)                                                                                                   |
| 3:30 pm | T11-021A | Gold coated silicon nanowire interface for electrophysiological recording of neurons and glia in co-culture<br>Giorgia Conte (Bologna, Italy)                                                      |
| 3:31 pm | T11-022A | Microglia-complement interactions mediate synaptic dysfunctions in a mouse model of schizophrenia<br>Nala Gockel (Bonn, Germany)                                                                   |
| 3:32 pm | T11-023A | Exploring functional sensor imaging of oligodendrocytes<br><b>Zainab Faik</b> (Zürich, Switzerland)                                                                                                |
| 3:33 pm | T11-024A | Impact of early disruption of parvalbumin interneuron-OPC interactions on prefrontal-dependent cognitive processes<br>Fabrice Plaisier (Paris, France)                                             |
| 3:34 pm | T11-025A | Altered secretion of astrocyte-derived extracellular vesicles contribute to the early metabolic failure and redox imbalance in Huntington's disease <b>Gonzalo Mayorga-Weber</b> (Valdivia, Chile) |
| 3:35 pm | T11-026A | Neuronal Apoptosis Drives Transient CD11c Expression in Retinal Microglia<br>Nathaniel Ghena (SALT LAKE CITY, USA)                                                                                 |
| 3:36 pm | T11-027A | iPSC-derived human brain tissue models to investigate glial crosstalk in AD<br>Carolina Cardoso Gonçalves (Munich, Germany)                                                                        |
| 3:37 pm | T11-028A | Retinal waves induce coordinated neuronal and astrocyte activity in developing visual centers of the brain <b>Vered Kellner</b> (Baltimore, USA)                                                   |





| 3:38 pm | T11-029A | Contribution of peripheral neuronal activity to spinal microglial reactivity in chronic pain<br>Manon Isler (Lausanne, Switzerland)                                                                  |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:39 pm | T11-030A | ICAM-1 reverses Amyloid-β mediated microgliosis and subsequent synaptic degeneration by targeting ERK phosphorylation in 5xFAD mice model of Alzheimer's Disease<br>Soumita Goswami (Kolkata, India) |
| 3:40 pm | T11-031A | Terminal Schwann Cells are unable to complete efficiently synaptic reinnervation in both ALS mouse models and patient neuromuscular junctions.<br>Amaia Elicegui (Donostia/San Sebastian, Spain)     |
| 3:41 pm | T11-032A | Influence of glial cells on signal transduction<br>Henrike Ohm (Münster, Germany)                                                                                                                    |
| 3:42 pm | T11-033A | Neuronal activity bidirectionally regulates myelin plasticity.<br><b>Stavros Vagionitis</b> (Cambridge, UK)                                                                                          |
| 3:43 pm | T11-034A | Microglia contribute to full maturation of glutamatergic networks but are dispensable for pruning of synapses during hippocampal development<br>Michael Surala (Berlin, Germany)                     |
| 3:44 pm | T11-035A | Real-time mechanisms of microglia-synapse interaction and spine elimination in acute models of systemic inflammation and tauopathy<br>Carla Cangalaya (Magdeburg, Germany)                           |
| 3:45 pm | T11-036A | Dendritic ATP release mediates cell type-specific bidirectional neuron-astrocyte communication<br>Antonia Beiersdorfer (Hamburg, Germany)                                                            |
| 3:46 pm | T11-037A | Towards shining light on axonal energy metabolite dynamics in vivo<br><b>Henri S. Zanker</b> (Zürich, Switzerland)                                                                                   |
| 3:47 pm | T11-038A | The ribosomal-associated protein RACK1 represses KIR4.1 translation in astrocytes and influences neuronal activity<br>Katia Avila Gutierrez (PARIS, France)                                          |
| 3:48 pm | T11-039A | Atypical chemokine receptor 3: a novel player in astrocyte-mediated elimination of synaptic terminals<br><b>Veronica Giusti</b> (Venezia, Italy)                                                     |



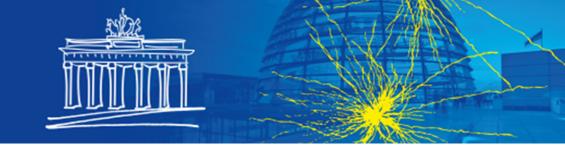
| 3:49 pm | T11-040A | Glial-neuronal crosstalk is crucial for postprandial carbohydrate sensing in <i>Drosophila melanogaster</i> larvae<br><b>Divita Kulshrestha</b> (Dresden, Germany)                                                                                                                                                                                                                      |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:50 pm | T11-041A | Developmental regulation of GABA <sub>A</sub> receptors in NG2 glia of the hippocampus<br>Gerald Seifert (Bonn, Germany)                                                                                                                                                                                                                                                                |
| 3:51 pm | T12-001A | Involvement of HIF-1 signaling in oligodendrocyte maturation in the <i>in vitro</i> model of neonatal hypoxia-ischemia<br><b>Justyna Janowska</b> (Warsaw, Poland)                                                                                                                                                                                                                      |
| 3:52 pm | T12-002A | Effects of endothelial YAP/TAZ on neuroinflammation and outcome after ischemic stroke<br>Ria Göttert (Berlin, Germany)                                                                                                                                                                                                                                                                  |
| 3:53 pm | T12-003A | Chronic infection predisposes white matter to ischaemic injury<br>Alexander G. Mellor (Plymouth, UK)                                                                                                                                                                                                                                                                                    |
| 3:54 pm | T12-004A | Role of selected chemokines in crosstalk of glial cells in the <i>in vitro</i> rat model of neonatal asphyxia<br><b>Justyna M. Gargas</b> (Warszawa, Poland)                                                                                                                                                                                                                            |
| 3:55 pm | T12-005A | The influence of histone deacetylase inhibitor – Sodium Butyrate - on microglia polarization in <i>in vitro</i> model of neonatal hypoxia-ischemia. The influence of histone deacetylase inhibitor – Sodium Butyrate - on microglia polarization in <i>in vitro</i> model of neonatal hypoxia-ischemia. The influence of histone deacetylase <b>Karolina Zi?bska</b> (Warszawa, Poland) |
| 3:56 pm | T12-006A | Autophagy regulates microglial phagocytosis of apoptotic cells in physiology and ischemic stroke pathology<br>Ainhoa Plaza-Zabala (Leioa, Spain)                                                                                                                                                                                                                                        |
| 3:57 pm | T12-007A | The influence of HDACis - Givinostat /ITF2357 and Sodium Butyrate treatment on PI3K/AKT and MAPK/ERK signaling pathways in a rat model of neonatal hypoxic-ischemic brain<br>damage.<br>Paulina Pawelec (Warsaw, Poland)                                                                                                                                                                |
| 3:58 pm | T12-008A | The role of astrocytic TRPV4 channels in regeneration after ischemic brain injury<br><b>Zuzana Hermanova</b> (Prague, Czech Republic)                                                                                                                                                                                                                                                   |




| 3:59 pm | T12-009A | Fetal inflammation and postnatal hypoxia cause reduced oligodendrocyte maturation, white matter injury and social deficits in a rat model for encephalopathy of prematurity <b>Myrna J.V. Brandt</b> (Utrecht, Netherlands) |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:00 pm | T12-010A | The role of TRPV4 and AQP4 in cytotoxic edema following brain ischemia<br><b>Valeria Marchetti</b> (Prague, Czech Republic)                                                                                                 |
| 4:01 pm | T14-001A | Low intensity repetitive transcranial magnetic stimulation enhances remyelination by newborn and surviving oligodendrocytes in the cuprizone model of toxic demyelination<br>Phuong Tram Nguyen (Hobart, Australia)         |
| 4:02 pm | T14-002A | Human Schwann cells fail to myelinate mouse axons in nerve xenograft transplantation model<br><b>Tak Ho Chu</b> (Calgary, Canada)                                                                                           |
| 4:03 pm | T14-003A | Dynamics of transcriptomic and epigenomic states of oligodendrocytes in experimental autoimmune encephalomyelitis<br><b>Chao Zheng</b> (Solna, Sweden)                                                                      |
| 4:04 pm | T14-004A | Myelination generates aberrant ultrastructure that is resolved by microglia<br>Minou Djannatian (Munich, Germany)                                                                                                           |
| 4:05 pm | T14-005A | The role of Sox8 for myelin maintenance relative to Sox10<br>Lisa Mirja Jörg (Erlangen, Germany)                                                                                                                            |
| 4:06 pm | T14-006A | Role of Cyclin-dependent kinase 7 in Schwann cell development and myelination<br>Nathalie Schumacher (Liège, Belgium)                                                                                                       |
| 4:07 pm | T14-007A | Role of maternal omega-3 fatty acid status in myelination during zebrafish neurodevelopment<br>Katherine M. Ranard (Aurora, USA)                                                                                            |
| 4:08 pm | T14-008A | Vagal Nerve Stimulation reduces neuroinflammation of demyelinated lesions in a murine model of Multiple Sclerosis<br>Fernando C. Ortiz (Santiago, Chile)                                                                    |
| 4:09 pm | T14-009A | Increased expression of Charcot-Marie-Tooth associated protein PMP22 in Schwann cells induces the integrated stress response via heme-regulated inhibitor (HRI) Kinase Gowda Sreerama Pramod (Nashville, USA)               |






| 4:10 pm | T14-010A | Insufficient oligodendrocyte turnover in optic nerve contributes to age-related axon loss and visual deficits<br>Feng Mei (Chongqing, China)                                   |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:11 pm | T14-011A | Changes in cortical excitatory and inhibitory synaptic transmission in a cuprizone-induced demyelination mouse model <b>Eduardo J. Fernandez Perez</b> (Paris, France)         |
| 4:12 pm | T14-012A | Adenyl cyclase 6 and cAMP signaling in peripheral myelination<br><b>Océane EL HAGE</b> (Le Kremin-Bicetre, France)                                                             |
| 4:13 pm | T14-013A | Myelin proteome resources by quantitative mass spectrometry<br><b>Olaf Jahn</b> (Göttingen, Germany)                                                                           |
| 4:14 pm | T14-014A | The fast-aging killifish: a unique animal model to study the impact of aging on remyelination in the damaged central nervous system <b>Julie De Schutter</b> (Leuven, Belgium) |
| 4:15 pm | T14-015A | Effects of α-synuclein on myelination, actin remodelling, and mechanical properties in human induced oligodendrocytes<br>Kristina Battis (Erlangen, Germany)                   |
| 4:16 pm | T14-016A | EAAT3 modulation of the oligodendrocyte lineage in <i>in vitro</i> and <i>in vivo</i> models of Multiple Sclerosis.<br>Lieve van Veggel (Hasselt, Belgium)                     |
| 4:17 pm | T14-017A | Phosphodiesterase (PDE) 4 inhibition boosts Schwann cell myelination in a 3D regeneration model<br>Melissa Schepers (Hasselt, Belgium)                                         |
| 4:18 pm | T14-018A | From methylation to myelination: epigenomic and transcriptomic profiling of chronic inactive demyelinated multiple sclerosis lesions <b>Assia Tiane</b> (Hasselt, Belgium)     |
| 4:19 pm | T14-019A | Schwann cell stimulation induces functional and structural changes in peripheral nerves <b>Cosmin I. Ciotu</b> (Vienna, Austria)                                               |
| 4:20 pm | T14-020A | Molecular structure of PMP22<br>David Ewers (Göttingen, Germany)                                                                                                               |

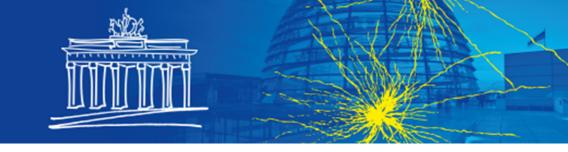




| 4:21 pm | T14-021A | Functional relevance of oligodendroglial CDC42 effector proteins CDC42EP1 and CDC42EP2 for myelin morphology<br>Sophie Hümmert (Göttingen, Germany)                                                                           |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:22 pm | T14-022A | Myelinated axon pathology in normal appearing white matter in progressive multiple sclerosis: Novel ultrastructural insight from large scale scanning transmission electron microscopy<br>Wendy Oost (Groningen, Netherlands) |
| 4:23 pm | T14-023A | The <i>soft</i> side of the brain: bioengineered platforms to unveil the role of mechanobiology in demyelinating diseases<br>Eva D. Carvalho (Porto, Portugal)                                                                |
| 4:24 pm | T14-024A | Long term impairment of cognitive function and neural network activity associated with structural changes in myelin after a transient episode of demyelination in adult mouse<br>Océane Mercier (Marseille, France)           |
| 4:25 pm | T14-025A | Cyclin-dependent Kinase 4 (CDK4) is involved in the myelin sheath maintenance of hypothalamic neurons by modulating lipid biosynthesis<br>Sarah Geller (Lausanne, Switzerland)                                                |
| 4:26 pm | T14-026A | Myelination: APC/C-Cdh1 new function?<br><b>Silvia Gomila Huguet</b> (Salamanca, Spain)                                                                                                                                       |
| 4:27 pm | T15-001A | The role of Sox9 in regulating the neuron/glial switch of adult hippocampal neural stem cells<br>Felix Beyer (Erlangen, Germany)                                                                                              |
| 4:28 pm | T15-002A | Ectopic recruitment of neuronal progenitors in/out of striatal white matter bundles following myelin impairment induced by chemical brain lesion.<br>Irini Thanou (Athens, Greece)                                            |
| 4:29 pm | T15-003A | Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells<br>Francesco Petrelli (Lausanne, Switzerland)                                                                                 |
| 4:30 pm | T15-004A | Neural precursor/stem cell-based therapy for Rett syndrome<br>Angelisa Frasca (Milan, Italy)                                                                                                                                  |






| 4:31 pm | T15-005A | BDNF and physical exercise as modulators of SVZ-derived adult oligodendrogenesis<br>Joana M. Mateus (Lisboa, Portugal)                                                                                              |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:32 pm | T15-006A | Metabolic profiling of neural stem/progenitor cells reveals regional identity<br>Valentina Scandella (Lausanne, Switzerland)                                                                                        |
| 4:33 pm | T16-001A | Studying sterile inflammation in ISG15 deficient microglia derived from human pluripotent stem cells<br><b>Miguel Salvador Torres Perez</b> (Toronto, Canada)                                                       |
| 4:34 pm | T16-002A | Opposing effects of microglial SIGLEC-11 and -16 receptors in transgenic mice on brain "inflammaging"<br>Harald Neumann (Bonn, Germany)                                                                             |
| 4:35 pm | T16-003A | Breaking the <i>circulus vitiosus</i> of neuroinflammation; resveratrol modulates the activation of human glial cells during cytokine-induced neuroinflammation<br>Luise Schlotterose (Kiel, Germany)               |
| 4:36 pm | T16-004A | Characterizing the accumulation of senescent-like myeloid cells in an experimental model of multiple sclerosis<br><b>Zeeba Manavi</b> (Washington, USA)                                                             |
| 4:37 pm | T16-005A | Defining Schwann cell – T cell interactions in inflammatory neuropathies by nanoscale FIB-SEM 3D imaging<br>Kai Christine Liebig (Essen, Germany)                                                                   |
| 4:38 pm | T16-006A | Understanding the interplay between meningeal inflammation and oligodendrocyte lineage cells in an MS mouse model<br>Leslie Kirby (Stockholm, Sweden)                                                               |
| 4:39 pm | T16-007A | Using ER-Hoxb8 conditionally-immortalized macrophages to study microglia replacement<br><b>Kelsey Nemec</b> (Philadelphia, USA)                                                                                     |
| 4:40 pm | T16-008A | TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy <b>Pascual Sanz</b> (Valencia, Spain) |
| 4:41 pm | T16-009A | Vagus nerve stimulation reduces microglia in lysolecithin induced demyelination.<br><b>Helen Bachmann</b> (Gent, Belgium)                                                                                           |

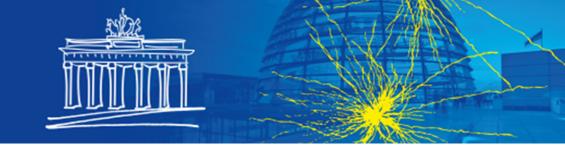




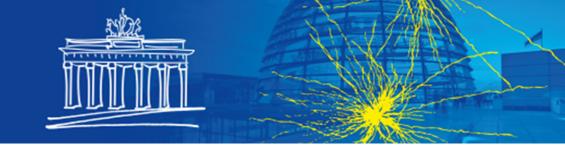
| 4:42 pm | T16-010A | Long lasting microglia activation after neonatal hypoxia correlates with neurological outcomes in a mouse model.<br>Aisling Leavy (Dublin, Ireland)                                                    |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:43 pm | T16-011A | Activation and responses of Müller glia and microglia in retinal degeneration<br>Silvia Finnemann (Bronx, USA)                                                                                         |
| 4:44 pm | T16-012A | The aging CNS is protected by an autophagy-dependent microglia population promoted by IL-34<br>Rasmus Berglund (Solna, Sweden)                                                                         |
| 4:45 pm | T16-013A | Enforced microglia repopulation by CSF1R inhibition alters the microglia response to peripheral LPS but does not revert endotoxin tolerance.<br>Tiago Medeiros-Furquim (Groningen, Netherlands)        |
| 4:46 pm | T16-014A | Development of a new automated pipeline allowing microglial ranking and discrimination according to their morphology.<br>Sarah Benkeder (Lyon, France)                                                 |
| 4:47 pm | T16-015A | Increased neuronal oxytocin via chemogenetic modulation positively affects microglial reactivity and brain development in a mouse model of neonatal inflammation.<br>Marit Knoop (Geneva, Switzerland) |
| 4:48 pm | T16-016A | Senescent Neural Stem Cells as Disease Pacemakers in Progressive Multiple Sclerosis<br>Alexandra Nicaise (Cambridge, UK)                                                                               |
| 4:49 pm | T16-017A | DNA Damage-Associated Pathological Mechanisms in Progressive Multiple Sclerosis<br>Pranathi Prasad (Cambridge, UK)                                                                                     |
| 4:50 pm | T16-018A | Human microglia incorporated into retinal organoids contribute to viral mediated inflammation and impact neuronal activity.<br>Verena Hübschmann (Klosterneuburg, Austria)                             |
| 4:51 pm | T16-019A | Investigating the effect of peripheral immune cytokines on astrocyte reactivity in Parkinson's disease<br>Adina N. MacMahon Copas (Dublin, Ireland)                                                    |
| 4:52 pm | T16-020A | Is TGFβ-1-signaling required for Nrf2-antioxidant pathway activation in a murine model of multiple sclerosis?<br><b>Coram Guevara Sánchez</b> (Santiago, Chile)                                        |



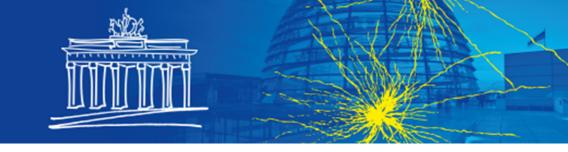



| 4:53 pm | T16-021A | An improved protocol yielding 'iPS-microglia' that faithfully recapitulate primary human microglia function and phenotype<br>Marie-France Dorion (Montreal, Canada)  |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:54 pm | T16-022A | Overexpression of the plasmalemmal Ca <sup>2+</sup> pump hPMCA2 in microglia attenuates intracellular calcium signaling<br><b>Fan Zeng</b> (Shenzhen, China)         |
| 4:55 pm | T16-023A | In vivo imaging of oligodendrocyte injury in an NMO mouse model<br><b>Selin Kenet</b> (Munich, Germany)                                                              |
| 4:56 pm | T16-024A | Changes in retinal macroglia over time in an experimental laser-induced glaucoma model.<br>Jose Antonio Fernandez-Albarral (MADRID, Spain)                           |
| 4:57 pm | T16-025A | Is the extent of reactive astrocyte transformation a function of implant size?<br>Janne Töykkälä (Freiburg im Breisgau, Germany)                                     |
| 4:58 pm | T16-026A | Glial changes in the retina of aged tauopathy mice after suppression of microglial Hemoxygenase-1 (HO-1)<br>Elena Salobrar-Garcia (Alcorcon, Spain)                  |
| 4:59 pm | T16-027A | Comparison of brain damages between male and female in a model of encephalopathy of prematurity : study of a sexual dimorphism <b>Jennifer Hua</b> (Paris, France)   |
| 5:00 pm | T16-028A | The role of astrocytes in genetic epilepsies<br>Jenny Lange (London, UK)                                                                                             |
| 5:01 pm | T16-029A | Sitagliptin, a drug for type 2 diabetes, inhibits microglia reactivity triggered by exposure to lipopolysaccharide<br>António Francisco Ambrósio (Coimbra, Portugal) |
| 5:02 pm | T16-030A | A Non-canonical Mechanism of Complement 4-Driven Cortical Synaptic Loss<br>Rhushikesh Anand Phadke (Boston, USA)                                                     |
| 5:03 pm | T16-031A | Targeting the GPR17 receptor to counteract oligodendrocyte maturation failure during inflammation<br>Juliana Helena Castro e Silva (Milan, Italy)                    |






| 5:04 pm | T16-032A | Investigating microglial miRNAs as novel pro-remyelination therapeutics in multiple sclerosis<br>Sarrabeth Stone (Parkville, Australia)                                              |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:05 pm | T16-033A | Effects of microglia driven inflammation on glioblastoma cells<br><b>Urszula Hohmann</b> (Halle (Saale), Germany)                                                                    |
| 5:06 pm | T16-034A | IN VIVO MULTIMODAL IMAGING OF ADENOSINE A2A RECEPTORS IN NEUROINFLAMMATION AFTER EXPERIMENTAL STROKE<br>Maider Garbizu (Leioa, Spain)                                                |
| 5:07 pm | T16-035A | Dissecting the role of mitochondrial dynamics in astrocyte reactivity<br>Abdulla Chihab (Cologne, Germany)                                                                           |
| 5:08 pm | T16-036A | Cellular mechanisms of prolonged functional impairment after transient ischemic attacks<br>Gemma Llovera (Munich, Germany)                                                           |
| 5:09 pm | T16-037A | HCA2 receptors modulate inflammatory interactions of the skin-brain axis<br>Anne Albrecht (Magdeburg, Germany)                                                                       |
| 5:10 pm | T16-038A | Adenosine exacerbates neuroinflammation via astrocytic A1 adenosine receptors<br>Qilin Guo (Homburg, Germany)                                                                        |
| 5:11 pm | T16-039A | Sexual dimorphism of androgen effects upon demyelination of the central nervous system<br>Amina Zahaf (Kremlin-Bicêtre, France)                                                      |
| 5:12 pm | T16-040A | MS patient LY induce smoldering like demyelinating lesion in mouse spinal cord.<br><b>Océane Perrot</b> (Paris, France)                                                              |
| 5:13 pm | T16-041A | NF-kB-mediated tolerance in a cellular model of neuroinflammation: implications for Parkinson's disease dopaminergic neurodegeneration<br>Irina Freitag Berenguel (Barcelona, Spain) |
| 5:14 pm | T16-042A | Influenza A virus (H1N1) infection induces microglia activation and temporal dysbalance in glutamatergic synaptic transmission<br>Henning P. Düsedau (Magdeburg, Germany)            |
|         |          |                                                                                                                                                                                      |






| 5:15 pm | T16-043A | Necrotizing enterocolitis promotes S100A9-induced activation of proinflammatory microglia<br>Line I. Christiansen (Frederiksberg, Denmark)          |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:16 pm | T16-044A | Reduced Sialylation Triggers Retinal Inflammation and Thinning of Photoreceptor Layer in Mice<br>German Cuevas Rios (Bonn, Germany)                 |
| 5:17 pm | T16-045A | A novel glial barrier structure of the choroid plexus: the <i>glia limitans perichoroidalis</i> <b>Sarah Joost</b> (Rostock, Germany)               |
| 5:18 pm | T16-046A | Bood-brain barrier integrity and sexual dimorphisms during macrophage invasion of the Drosophila nervous system<br>Dominik Funke (Münster, Germany) |
| 5:19 pm | T16-047A | Bioassays to study concentration level, binding and anti-inflammatory activity of polysialic acid<br>Annemarie Bungartz (Bonn, Germany)             |
| 5:20 pm | T16-048A | The Role of the NF-kB-inducing Kinase in CX3CR1 Positive Cells During Experimental Autoimmune Encephalomyelitis<br>Nishada Ramphal (Mainz, Germany) |
| 5:21 pm | T16-049A | The role of Caspase 4 in anti-inflammatory effect of CB2R agonism during microglia-derived neuroinflammation.<br>Natalia Malek (Wroclaw, Poland)    |
| 5:22 pm | T16-050A | Therapeutic effect of $\alpha$ 7 nicotinic receptor modulation after cerebral ischemia in rats <b>Laura Aguado</b> (Leioa, Spain)                   |
| 5:23 pm | T16-051A | B cells regulate chronic CNS inflammation in an IL-10-dependent manner<br>Darius Häusler (Göttingen, Germany)                                       |
| 5:24 pm | T16-052A | Role of TDP-43 in reactive transformation of astrocytes in human stem cell model <b>Doaa Taha</b> (London, UK)                                      |
| 5:25 pm | T16-053A | OPCs as gatekeepers of neuroinflammation<br><b>Sonia Cabeza Fernández</b> (Alicante, Spain)                                                         |



| 5:26 pm | T16-054A | Microgliosis, astrogliosis and aquaporin-4 abnormality in frontal cortex of Covid-19 patients <b>Christian Lohr</b> (Hamburg, Germany)                                 |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:27 pm | T16-055A | Modulation of microglia phenotype and function by type I interferons<br>Carme Solà (Barcelona, Spain)                                                                  |
| 5:28 pm | T17-001A | A sexual dimorphic microglia response modulates visual cortex network activity after ketamine-anesthesia.<br>Alessandro Venturino (Klosterneuburg, Austria)            |
| 5:29 pm | T17-002A | Effects of oral saffron on retinal glial cytokine expression in an experimental model of glaucoma <b>Rosa de Hoz</b> (Madrid, Spain)                                   |
| 5:30 pm | T17-003A | Investigating neuron-glia interactive effects in cortical neuron network changes in an iPSC model of 4H leukodystrophy<br>Liza M.L. Kok (Amsterdam, Netherlands)       |
| 5:31 pm | T17-004A | Contribution of glial cells during action selection in Drosophila larvae<br>Amber Amrei Krebs (Münster, Germany)                                                       |
| 5:32 pm | T17-005A | Manipulating astrocytic activity as a gateway to modulate adult neuroplasticity<br>Maria João Pereira (Leuven, Belgium)                                                |
| 5:33 pm | T17-006A | Astrocyte integration of histaminergic signals in a cortical circuit <b>Charlotte R. Taylor</b> (San Francisco, USA)                                                   |
| 5:34 pm | T17-007A | Enhancement of astrocytic Glu/GABA exchange by multiple mechanisms is effective against convulsive and non-convulsive seizures. <b>Saif Qahtan</b> (Budapest, Hungary) |
| 5:35 pm | T17-008A | Dopamine signaling in striatal astrocytes<br>Giulia Favetta (Padova, Italy)                                                                                            |
| 5:36 pm | T17-009A | Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation<br><b>Yichao Yu</b> (London, UK)                                                           |



| 5:37 pm | T19-001A | A multi-omic approach to study mitochondrial deficits in iPSC-derived astrocytes with a high polygenic risk for schizophrenia<br>Karen E. Laupman (Amsterdam, Netherlands)                                  |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:38 pm | T19-002A | Hippocampal astrocytes modulate anxiety-like behavior<br><b>Sung Joong Lee</b> (Seoul, South Korea)                                                                                                         |
| 5:39 pm | T19-003A | A maternal high-fat diet during pregnancy and lactation altered myelination and induced depressive-like phenotype in rat offspring<br>Irena Smaga-Ma?lanka (Kraków, Poland)                                 |
| 5:40 pm | T19-004A | Aldolase C in the astrocytes emerges as a protein that may connect early life stress to depression<br>Giulia Treccani (Mainz, Germany)                                                                      |
| 5:41 pm | T19-005A | Microglia Display TREM2-Associated Deficits in Synaptic Engulfment in the Neuroligin-4 Knock-Out Mouse Model of Autism<br>Bilge Ugursu (Berlin, Germany)                                                    |
| 5:42 pm | T19-006A | Pathological oligodendrocyte precursor cells revealed in human schizophrenic brains and trigger schizophrenia-like behaviors and synaptic defects in genetic animal model<br>Jianqin Niu (Chongqing, China) |
| 5:43 pm | T19-007A | Astrocytic EAAT2 in Basolateral Amygdala Regulates Stress-Induced Anxiety-like Behavior<br><b>Qian Xiao</b> (Shenzhen, China)                                                                               |
| 5:44 pm | T19-008A | Early life adversity and the impact of glucocorticoids on NG2-glia: a potential mechanism for stress-related psychiatric disorders<br>Lorenzo Mattioni (Mainz, Germany)                                     |
| 5:45 pm | T19-009A | Food restriction in mice induces circadian rhythm-related activity changes and glial cell alterations in the corpus callosum and hypothalamus<br>Linda Frintrop (Rostock, Germany)                          |
| 5:46 pm | T19-010A | 3D co-culture platform to study myelination deficits in schizophrenia using hiPSC-derived neurons and oligodendrocyte lineage cells<br>Martina von der Bey (Heidelberg, Germany)                            |
| 5:47 pm | T19-011A | Transcriptomic analysis of human brain nuclei to investigate hypomyelination pathology in schizophrenia<br>Janina Nadine Breining (Heidelberg, Germany)                                                     |





| 5:48 pm | T19-012A | The Role of Astrocytes in Postnatal Synaptic Refinement of the Medial Prefrontal Cortex<br>Johanna Furrer (Zürich, Switzerland)                                                                    |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:49 pm | T20-001A | Clearance of Senescent-Like Microglia Improves Remyelination in Young and Aged Mice<br>Phillip S. Gross (Washington DC, USA)                                                                       |
| 5:50 pm | T20-002A | Control chromatin remodelling enzymes in Schwann cells to improve peripheral nerve regeneration<br><b>Nadège Hertzog</b> (Mainz, Germany)                                                          |
| 5:51 pm | T20-003A | Learning from Schwann cells, modulating gene expression in Oligodendrocytes after injury<br>Gianluigi Nocera (Mainz, Germany)                                                                      |
| 5:52 pm | T20-004A | The small intestine submucosa with high glial cell line-derived neurotrophic factor loading capacity enhanced Schwann cell proliferation after neurorrhaphy.<br>Wen Chieh Liao (Taichung, Taiwan)  |
| 5:53 pm | T20-005A | NG2 cells mediate cannabinoid-induced functional recovery following demyelination<br>Javier Palazuelos (Madrid, Spain)                                                                             |
| 5:54 pm | T20-006A | Characterization of Macroglia Response in an Experimental Retina Laser Model<br><b>Volker Enzmann</b> (Bern, Switzerland)                                                                          |
| 5:55 pm | T20-007A | Highly oriented nanofibers override barrier-forming Schwann cell-astrocyte interfaces and enable neuritic outgrowth into the astrocytic compartment in vitro<br>Pascal Achenbach (Aachen, Germany) |
| 5:56 pm | T20-008A | White matter myelin regeneration is regulated in the grey matter <b>Omar de Faria Jr.</b> (Cambridge, UK)                                                                                          |
| 5:57 pm | T20-009A | Microglia regulate OPC recruitment and differentiation during remyelination<br>Charbel S. Baaklini (Edmonton, Canada)                                                                              |
| 5:58 pm | T20-010A | Peripheral glia inhibit sensory nerve regeneration following central branch axotomy<br>Robin I. Brown (Charlottesville, USA)                                                                       |
|         |          |                                                                                                                                                                                                    |





| 5:59 pr | n T20-011A | The TAM receptor Tyro3 is critical for the promotion of remyelination by GAS6<br>Michele D. Binder (Parkville, Australia)                                       |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:00 pr | m T20-012A | Innate immune training in remyelination<br>Vini Tiwari (Munich, Germany)                                                                                        |
| 6:01 pr | m T20-014A | Teriflunomide promotes myelin repair <i>in vivo</i><br><b>Peter Goettle</b> (Düsseldorf, Germany)                                                               |
| 6:02 pr | m T20-015A | Intranasal delivery enteric glia promotes angiogenesis and neurogenesis in a rat model of brain injury<br>Nina Colitti (TOULOUSE, France)                       |
| 6:03 pr | m T20-016A | Generating human adult oligodendroglia to screen for compounds to enhance remyelination<br>Laura J. Wagstaff (Edinburgh, UK)                                    |
| 6:04 pr | m T22-001A | Ethanol activates hemichannels and pannexons with negative repercussions for astroglial function <b>Juan A. Orellana</b> (Santiago, Chile)                      |
| 6:05 pr | m T22-002A | The role of P/Q-type calcium channels in oligodendrocyte development<br>Melanie Piller (Portland, USA)                                                          |
| 6:06 pr | m T22-003A | Modulating oligodendrocyte precursor cell states<br>Yasmine Kamen (Cambridge, UK)                                                                               |
| 6:07 pr | m T22-004A | Ablation of microglial Connexin43 alleviates the cognition decline and neuronal malfunction in a model of Alzheimer's disease <b>Yixun Su</b> (Shenzhen, China) |
| 6:08 pr | n T22-005A | Mitochondrial trafficking in primary microglia cells is influenced by the TRPV4 ion channel <b>Andreea E. Burlacu</b> (Hasselt, Belgium)                        |
| 6:09 pr | m T24-001A | SorLA impacts pro-tumorigenic properties of microglia during glioblastoma progression <b>Paulina Kaminska</b> (Warsaw, Poland)                                  |



| 6:10 pm | T24-002A | Investigating the evolution of neuron-glioma circuit dynamics using an in vivo imaging method<br><b>Kiarash Shamardani</b> (Stanford, USA)                                       |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:11 pm | T24-003A | Heterogeneity and plasticity of tumour associated astrocytes in murine gliomas as defined by immunohistochemistry and spatial transcriptomics<br>Mitrajit Ghosh (Warsaw, Poland) |
| 6:12 pm | T24-004A | An improved F98 rat glioma model for combinatorial approaches incorporating the standard therapy for glioblastoma<br>Velislava Zoteva (Gent, Belgium)                            |
| 6:13 pm | T24-005A | GABAergic neuron-to-glioma synapses in diffuse midline gliomas<br><b>Tara Barron</b> (Stanford, USA)                                                                             |
| 6:14 pm | T24-006A | S1P Receptor 1 on Glioma-Associated Astrocytes Regulates Tumor Growth and Progression<br>Alexandra Gonsiewski (Richmond, USA)                                                    |
| 6:15 pm | T24-007A | Trem2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages<br>Xianyuan Xiang (Shenzhen, China)                                                   |
| 6:16 pm | T24-008A | Spatially resolved transcriptomics for the study of horizontal transfer of mitochondria in a mouse model of glioblastoma<br>Ond?ej Va?átko (Prague, Czech Republic)              |
| 6:17 pm | T24-009A | STAT3-mediated astrocytic reactivity in glioblastoma multiforme<br>Paula Martínez Remedios (Barcelona, Spain)                                                                    |
| 6:18 pm | T24-010A | Schwann cell plasticity contributes to axonal remodeling during pancreatic cancer progression.<br>Martha Montserrat Rangel Sosa (Marseille, France)                              |
| 6:19 pm | T24-011A | Astrocytic Reprogramming Impairs Human Glioblastoma Growth <i>In Vitro</i> and <i>In Vivo</i><br>Francesco Trovato (Lund, Sweden)                                                |
| 6:20 pm | T24-012A | Low doses Decitabine-induced anti-tumor effects are dependent on TRAIL-TRAIL receptor signal induction <b>Eun Jeong Lee</b> (Suwon, South Korea)                                 |

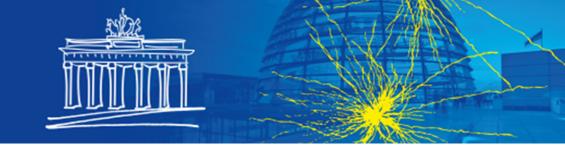




#### **S01** | Multiomic analysis of glia-mediated regeneration

| Chairs:        | Enr   | ric Llorens-Bobadilla (Stockholm, Sweden); Seth Blackshaw (Baltimore, USA)                                                                                        |  |  |
|----------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Presentations: |       |                                                                                                                                                                   |  |  |
| 4:30 pm        | S0101 | The latent potential of mammalian neural stem cells to regenerate the injured spinal cord <b>Enric Llorens-Bobadilla</b> (Stockholm, Sweden)                      |  |  |
| 5:00 pm        | S0102 | The unique regenerative state of spinal progenitors<br><b>Catherina G. Becker</b> (Dresden, Germany)                                                              |  |  |
| 5:30 pm        | S0103 | Gene regulatory networks controlling neurogenic competence and cell fate specification in zebrafish and mammalian Müller glia.<br>Seth Blackshaw (Baltimore, USA) |  |  |
| 6:00 pm        | S0104 | Understanding the gene regulatory program underlying the remarkable regeneration seen in salamanders <b>Elly Tanaka</b> (Vienna, Austria)                         |  |  |






### S02 | Building the nervous system: critical roles for microglia prior to pruning

Chairs:

| 4:30 pm | S0201 | Microglial support of synaptic development in the nucleus accumbens<br>Lindsay De Biase (Los Angeles, USA)                     |
|---------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| 5:00 pm | S0202 | Early invaders of the brain: embryonic colonization and functions of microglia<br><b>Morgane S. Thion</b> (Paris, France)      |
| 5:30 pm | S0203 | Microglia Regulate Chandelier Cell Axo-axonic Synaptogenesis<br>Linda Van Aelst (Cold Spring Harbor, USA)                      |
| 6:00 pm | S0204 | Cross-talk of CNS macrophages and vasculature during development and homeostasis <b>Annika Keller</b> (Schlieren, Switzerland) |





#### S03 | Astrocyte diversity drives specificity in the making, regulation and dysfunction of brain circuits

Chairs: Andrea Volterra (Geneva, Switzerland)

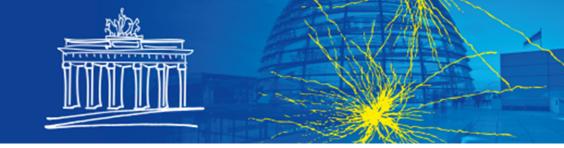
- 4:30 pm S0301 Regulation of heterogeneous gene expression in astrocytes and synapse development by neuronal and astrocyte activity. **Isabella Farhy-Tselnicker** (College Station, USA)
- 5:00 pm S0302 Astrocyte diversity: the adult dentate gyrus is populated by layer-specific astrocyte subtypes **Ruth Beckervordersandforth** (Erlangen, Germany)
- 5:30 pm S0303 A specialized sub-population of astrocytes with glutamate-secreting properties in hippocampus Andrea Volterra (Lausanne, Switzerland)
- 6:00 pm S0304 Tracking astrocyte dynamics along Alzheimer's disease and aging: One cell at a time **Naomi Habib** (Jerusalem, Israel)





#### S04 | Glial cells of the gut: from neural stem cells to regulators of homeostasis

**Chairs:** Werend Boesmans (Diepenbeek, Belgium); Carla Cirillo (Toulouse, France) **Presentations:** 4:30 pm S0401 Understanding the regulation of enteric glia status Werend Boesmans (Diepenbeek, Belgium) S0402 5:00 pm tba Vassilis Pachnis (London, UK) S0403 Neuron-glia interactions at the gut mucosal interface 5:30 pm Meenakshi Rao (Boston, USA) Glia cells of the gut: promising candidates for cell-based therapy 6:00 pm S0404 Carla Cirillo (Toulouse, France)






### **S05** | Regulation of neuroinflammation in CNS remyelination

| Chairs:        | Jeffr | ey Huang (Washington, USA); Tara DeSilva (Cleveland, USA)                                              |  |  |
|----------------|-------|--------------------------------------------------------------------------------------------------------|--|--|
| Presentations: |       |                                                                                                        |  |  |
| 4:30 pm        | S0501 | tba<br><b>Jeffrey Huang</b> (Washington, USA)                                                          |  |  |
| 5:00 pm        | S0502 | Innate and adaptive immune mechanisms in myelin regeneration<br><b>Yvonne Dombrowski</b> (Belfast, UK) |  |  |
| 5:30 pm        | S0503 | Microglia-mediated mechanisms of myelination<br>Tara M. DeSilva (Cleveland, USA)                       |  |  |
| 6:00 pm        | S0504 | tba<br><b>Daniel Reich</b> (Bethesda, USA)                                                             |  |  |





Saturday, 8 July, 2023, 7:00 p.m. - 8:00 p.m.

#### L02 | Plenary Lecture II: Michael Wegner

Chairs: Leda Dimou (Munich, Germany)

#### **Presentations:**

7:00 pm L0201 Organizing and adapting the gene regulatory network in myelinating glia **Michael Wegner** (Erlangen, Germany)





Sunday, 9 July, 2023, 8:30 a.m. - 9:30 a.m.

#### L03 | Plenary Lecture III: Marc Freeman

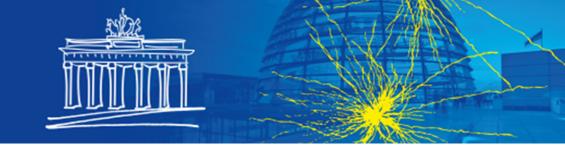
Chairs: Alfonso Araque (Minnesota, USA)

#### **Presentations:**

8:30 am L0301 Neuron-glia signaling during neuronal remodeling Marc Freeman (Portland, OR, USA)



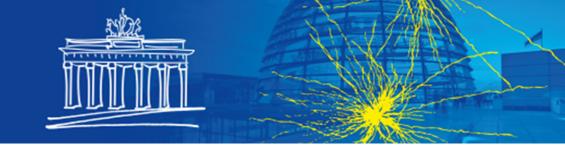



#### S06 | How microglia sense and regulate neuronal activity

Chairs: Long-Jun Wu (Rochester, USA)

#### **Presentations:**

- 10:00 am S0601 Dopamine-mediated control of microglia-neuron interaction and function Hayley Strasburger (New York City, USA)
- 10:30 am S0602 Microglia process dynamics: synapse formation, neuronal activity and local synchronization. **Junichi Nabekura** (Okazaki, Japan)
- 11:00 am S0603 Neuron-microglia communication via neurotransmitters Marcus Semtner (Berlin, Germany)
- 11:30 am S0604 Microglia sense and regulate neuronal activity through adrenergic mechanisms Long-Jun Wu (Rochester, USA)






### S07 | Using non-mammalian models to uncover fundamental roles of glia in circuit development

| Chairs:    | Sara  | h Ackerman (Saint Louis, USA); Vilaiwan Fernandes (London, UK)                                                                                      |
|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentati | ions: |                                                                                                                                                     |
| 10:00 am   | S0701 | How Oligodendrocyte Precursor Cells Shape the Form and Function of Neural Circuits <b>Tim Czopka</b> (Edinburgh, UK)                                |
| 10:30 am   | S0702 | Mechanistic insights into glial heterogeneity and glia-neuron interactions in <i>C. elegans.</i> Aakanksha Singhvi (Seattle, USA)                   |
| 11:00 am   | S0703 | ADrosophilaglial cell atlas reveals that transcriptionally defined cell types can be morphologically diverse <b>Vilaiwan Fernandes</b> (London, UK) |
| 11:30 am   | S0704 | Astrocytes set the timer for critical period plasticity<br>Sarah D. Ackerman (Saint Louis, USA)                                                     |





### S08 | Molecular and cellular regulation of myelination throughout life (Special Trainee symposium)

| Chairs:        | Noémie Adès (PARIS, France); Michael Thornton (Aurora, USA) |                                                                                                                                                                          |
|----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentations: |                                                             |                                                                                                                                                                          |
| 10:00 am       | S0801                                                       | Spatial cellular dynamics of lesion development and progression in a mouse model of multiple sclerosis<br><b>Petra Kukanja</b> (Solna, Sweden)                           |
| 10:05 am       | S0802                                                       | Longitudinal <i>in vivo</i> three-photon imaging reveals region-specific differences in healthy and regenerative oligodendrogenesis<br>Michael A. Thornton (Aurora, USA) |
| 10:10 am       | S0803                                                       | Metabotropic glutamate receptors sense neuronal signals and mediate activity-driven myelination in zebrafish<br>Philipp Braaker (Edinburgh, UK)                          |
| 10:15 am       | S0804                                                       | PAK1 inactivation triggers myelin formation through actin disassembly in oligodendrocytes<br>Noémie Adès (PARIS, France)                                                 |
| 10:20 am       | S0805                                                       | Myelin accuracy requires calcium-regulated actin steering<br>Manasi Iyer (Stanford, USA)                                                                                 |



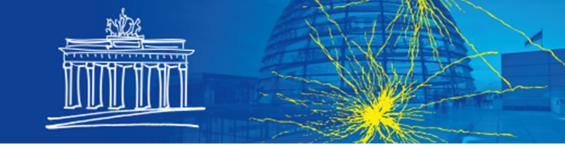


### S09 | Mechanisms of glia-neuron crosstalk maintaining neural homeostasis

Chairs: Aiman Saab (Zurich, Switzerland)

#### **Presentations:**

| 10:00 am | S0901 | Impact of the metabolic shape of astrocytes on neuronal function and animal behavior <b>Juan P Bolanos</b> (Salamanca, Spain) |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 10:30 am | S0902 | Endogenous Protective Mechanisms of the Astrocyte Connectome<br>Melissa L. Cooper (New York, USA)                             |
| 11:00 am | S0903 | Myelin's highway to the glial-axonal junction<br>Julia M. Edgar (Glasgow, UK)                                                 |
| 11:30 am | S0904 | Oligodendrocyte functions shape axonal energy metabolism<br>Aiman S. Saab (Zurich, Switzerland)                               |



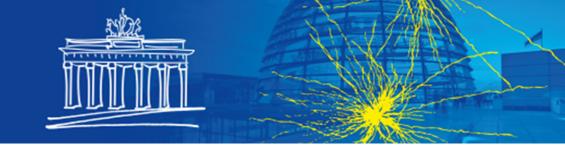



#### S10 | Do astrocytes really regulate cerebral blood flow?

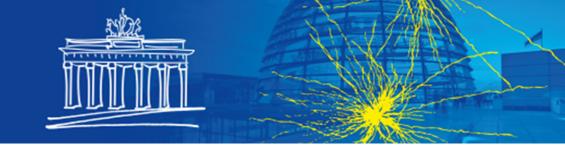
| Chairs:   | Alex  | ander Gourine (London, UK); Jessica Filosa (Augsuta, USA)                                                                                               |
|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentat | ions: |                                                                                                                                                         |
| 10:00 am  | S1001 | Astrocyte regulation of neurovascular coupling in health and disease <b>Anusha Mishra</b> (Portland, USA)                                               |
| 10:30 am  | S1002 | Astrocyte calcium contributes to specific types of cerebral blood flow regulation <b>Grant R. Gordon</b> (Calgary, Canada)                              |
| 11:00 am  | S1003 | <i>In vivo</i> pressure-evoked astrocyte calcium increases in a mouse model of high blood pressure variability. <b>Jessica A. Filosa</b> (Augsuta, USA) |
| 11:30 am  | S1004 | Astrocytes and regulation of cerebral blood flow during brain hypoxia<br>Alexander Gourine (London, UK)                                                 |






#### **PS2 | Poster Session II**

Chairs:

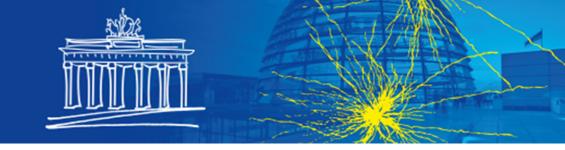

#### **Presentations:**

| 1:00 pm | T02-011B | Exploring the role of the NG2 glia-specific receptor GPR17 in the context of aging<br>Lea Jäger (Ulm, Germany)                                                                                                             |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:01 pm | T02-012B | Harnessing the power of movement: exploring the effects of voluntary physical activity on glial cell function and oligodendrogenesis in the aging brain<br>Aladdin Skaf (Ulm, Germany)                                     |
| 1:02 pm | T02-013B | Generation of oligodendrocytes-enriched 3D human brain organoids for the study of Globoid Cell Leukodystrophy<br>Elisabeth Mangiameli (Milan, Italy)                                                                       |
| 1:03 pm | T02-014B | Activated caspase-3 is not an exclusive apoptotic marker in the spinal cord: a comprehensive study of the activated caspase-3 <sup>+</sup> population of cells in rat spinal cord <b>Radovan Holota</b> (Košice, Slovakia) |
| 1:04 pm | T02-015B | PKD1 regulates astrocyte maturation and mitochondrial biogenesis<br>Luis Sánchez-Miranda Pajuelo (Madrid, Spain)                                                                                                           |
| 1:05 pm | T02-016B | Spatio-temporal recruitment of adult neural stem cells during pregnancy for transient neurogenesis<br>Zayna Chaker (Basel, Switzerland)                                                                                    |
| 1:06 pm | T02-017B | Improved functional properties of microglia-like cells derived from trained precursors<br>Mihaela Guranda (Göttingen, Germany)                                                                                             |
| 1:07 pm | T02-018B | Monocyte-derived microglia-like cells – A human model to replace mouse primary microglia?<br>Johannes Wurm (Bielefeld, Germany)                                                                                            |

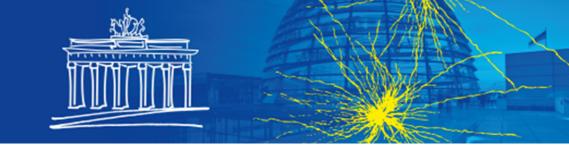




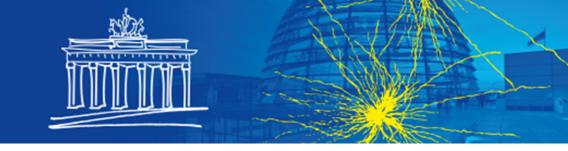
| 1:08 pm | T02-019B | STIMULATION OF ASTROCYTES IN THE NEUROGENIC NICHE OF THE DENTATE GYRUS<br>Thibault Sprenger (Prilly, Switzerland)                                                                     |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:09 pm | T02-020B | Human induced pluripotent stem cell-derived microglia-like cells to investigate therapeutic strategies targeting multiple sclerosis progression<br>Alica Blenkle (Göttingen, Germany) |
| 1:10 pm | T03-011B | Palmitic acid drives Müller glial cells pro-inflammatory and metabolic switch in a diabetic retinopathy model<br>Remi Karadayi (Paris, France)                                        |
| 1:11 pm | T03-012B | Extracellular vesicle signaling and its effects on Schwann cells in a regenerative setting<br>Maximilian Haertinger (Vienna, Austria)                                                 |
| 1:12 pm | T03-013B | Cdc42 orchestrates microglial signaling and morphological plasticity<br>Joana Tedim-Moreira (Porto, Portugal)                                                                         |
| 1:13 pm | T03-014B | Lysophosphatidic acid signaling via LPA₀: a negative modulator of oligodendrocyte maturation.<br>Babette Fuss (Richmond, Virgina, USA)                                                |
| 1:14 pm | T03-015B | Exploring the neuroprotective mechanisms of astrocyte-derived extracellular vesicles in the context of Parkinson's disease<br>Greta Paternò (Catania, Italy)                          |
| 1:15 pm | T03-016B | Enteric glial cells regulate T-cell activity in inflammatory bowel diseases.<br>Marvin Bubeck (Erlangen, Germany)                                                                     |
| 1:16 pm | T03-017B | Short term regulation of aqp4ex: from bioinformatic approach to in vitro study<br>Roberta Pati (Bari, Italy)                                                                          |
| 1:17 pm | T03-018B | Reconstruction of Bergmann glial morphology for whole-cell calcium simulations<br>Laura Keto (Tampere, Finland)                                                                       |
| 1:18 pm | T03-019B | CaSCaDe: a toolbox for an automatic analysis of calcium signals from neural cells<br><b>Khaleel Alhalaseh</b> (Heidelberg, Germany)                                                   |




| 1:19 pm | T03-020B | Computational tools to unravel mechanistic links between intracellular architecture and cell function <b>Audrey Denizot</b> (Onna-son, Japan)                                  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:20 pm | T04-001B | Star-shape: combining hiPSC modeling and bionegineering to probe the mechanobiology of astrocytes' shape-function dynamics <b>Ludovica Malu Guetta</b> (London, UK)            |
| 1:21 pm | T04-002B | The role of ADF/cofilin1 in microglia morphology and function<br>Marie Denise Roggan (Bonn, Germany)                                                                           |
| 1:22 pm | T04-003B | Arp2/3 complex controls microglial cell dynamics and maturation<br><b>Shima Safaiyan</b> (Freiburg, Germany)                                                                   |
| 1:23 pm | T04-004B | Drosophila ß <sub>Heavy</sub> -Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil <b>Nicole Pogodalla</b> (Münster, Germany) |
| 1:24 pm | T04-005B | Unraveling astrocyte dysfunction in the white matter disease MLC: linking the cytoskeleton to volume-regulated ion channels <b>Quinty Bisseling</b> (Amsterdam, Netherlands)   |
| 1:25 pm | T04-006B | Disrupted-In-Schizophrenia 1 controls microglial movement and phagocytosis<br>Sofie Kessels (Hasselt, Belgium)                                                                 |
| 1:26 pm | T04-007B | Methamphetamine activates rac1 in striatal microglia<br>Ana F. Terceiro (Porto, Portugal)                                                                                      |
| 1:27 pm | T05-031B | miRNA depleted Müller glia show diminished gliosis and better retinal health after retinal damage <b>Daniel Larbi</b> (New York, NY, USA)                                      |
| 1:28 pm | T05-032B | Spatial multi-omic characterization of multiple sclerosis lesions<br>Yonglong Dang (Stockholm, Sweden)                                                                         |
| 1:29 pm | T05-033B | Premature brain ageing, the aftermath of an early-life inflammatory event <b>David Guenoun</b> (Paris, France)                                                                 |

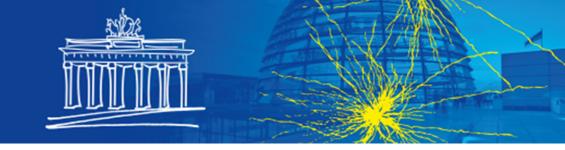



| 1:30 pm | T05-034B | Human iPSC-based models unveil altered trafficking and processing of GALC mutant enzymes in Globoid cell leukodystrophy.<br>Clarissa Rosato (Milan, Italy)                                                |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:31 pm | T05-035B | Microglia ferroptosis contributes to neurodegeneration in an hiPSC-derived tri-culture<br>Sean Ryan (Cambridge, USA)                                                                                      |
| 1:32 pm | T05-036B | Cracking the code of amyotrophic lateral sclerosis (ALS): how astrocyte mutations affect the cross-talk with motor neurons<br>Benedetta Frizzi (Leuven, Belgium)                                          |
| 1:33 pm | T05-037B | Identifying the function of novel genetic variants associated with multiple sclerosis development and progression<br>Jessica Fletcher (Hobart, Australia)                                                 |
| 1:34 pm | T05-038B | GFAP Upregulation by Astrocytes Does Not Substantially Impact Phospho-Tau Pathology or Downstream Neurodegeneration in a Tauopathy Mouse Model<br>Clara Muñoz-Castro (Boston, USA)                        |
| 1:35 pm | T05-039B | Ascorbate insufficiency disrupts glutamatergic neurotransmission recorded by surface electroencephalogram in a mouse model of Alzheimer's disease<br>Rebecca Buchanan (Nashville, USA)                    |
| 1:36 pm | T05-040B | Induction of plaque-like Aβ aggregates in human iPSC-derived mixed cell type neurospheres as a model to study Aβ-microglia interaction<br>Stefan Wendt (Vancouver, Canada)                                |
| 1:37 pm | T05-041B | Human neuron and astrocyte behaviour is affected by Dystrophin mutations<br>Reem R. Alkharji (London, UK)                                                                                                 |
| 1:38 pm | T05-042B | Peripheral glial cells in late-onset spinal muscular atrophy – Schwann cells in focus<br><b>Markus Leo</b> (Essen, Germany)                                                                               |
| 1:39 pm | T05-043B | Subtle changes in cortical microglia and oligodendrocytes in a mouse model of amyotrophic lateral sclerosis.<br>Jana Tureckova (Prague, Czech Republic)                                                   |
| 1:40 pm | T05-044B | Astrocytes in focus: EAAT1-induced glutamate-toxicity plays a significant role in motor neuron degeneration in a late-onset spinal muscular atrophy mouse model<br>Linda-Isabell Schmitt (Essen, Germany) |






| 1:41 pm | T05-045B | Evaluation of astrocytes morphological changes in tauopathies<br><b>Emma Augustin</b> (Fontenay-aux-Roses, France)                                                                                                      |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:42 pm | T05-046B | New insights on the role of AQP4 and its isoforms in cerebral water homeostasis: an <i>in vitro</i> and <i>in vivo</i> study<br><b>Pasqua Abbrescia</b> (Bari, Italy)                                                   |
| 1:43 pm | T05-047B | CB <sub>2</sub> receptor in glial cells as a new therapeutic target in amyotrophic lateral sclerosis and frontotemporal dementia.<br><b>Carmen Rodriguez-Cueto</b> (MADRID, Spain)                                      |
| 1:44 pm | T05-048B | Characterising functional effects of fibrinogen on TREM2-mutant human iPS-microglia<br><b>Emily Boorman</b> (London, UK)                                                                                                |
| 1:45 pm | T05-049B | S100B protein plays a crucial role in astrocyte activation<br>Fabrizio Michetti (Rome, Italy)                                                                                                                           |
| 1:46 pm | T05-050B | Human iPSC derived Microglia model for Toxicology assays<br><b>János Farkas</b> (Gödöll?, Hungary)                                                                                                                      |
| 1:47 pm | T05-051B | Identifying biomarkers for potential pathological mechanisms in neurological diseases<br>Paula Klassen (Ulm, Germany)                                                                                                   |
| 1:48 pm | T05-052B | Polycaprolactone nanofiber substrates attenuate astrocyte reactivity following A1 stimulation<br>Gregory Thinnes (Aachen, Germany)                                                                                      |
| 1:49 pm | T05-053B | Phenotype changes of spinal cord microglia cells acutely purified from SOD1 <sup>G93A</sup> ALS mice during disease progression: focus on the genetic down regulation of mGlu5 receptor<br>Matilde Balbi (Genoa, Italy) |
| 1:50 pm | T05-054B | Astroglial GABA <sub>в</sub> receptor deletion protects against γ-hydroxybutyric acid-induced absence seizures<br><b>Davide Gobbo</b> (Homburg, Germany)                                                                |
| 1:51 pm | T05-055B | The Influence of TGFβ signaling on the phagocytosis of amyloid beta species <b>Natascha Vidovic</b> (Bielefeld, Germany)                                                                                                |




| 1:52 pm | T05-056B | Novel assay for the detection of serum-mediated astrocytopathy in neuromyelitis optica spectrum disorders based on human astrocytes<br>Marlen Alisch (Berlin, Germany)            |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:53 pm | T05-057B | Developing organotypic chimeric human-murine brain slices as a model system for studying neurodegeneration<br>Bakhrom Muinjonov (Berlin, Germany)                                 |
| 1:54 pm | T05-058B | A repurposing approach to delay disease progression in SOD1 <sup>G93A</sup> mice by counteracting oligodendrocyte dysfunction <b>Stefano Raffaele</b> (Milano, Italy)             |
| 1:55 pm | T05-059B | The Alzheimer's disease risk gene INPP5D modulates microglia-mediated synaptic pruning in the developing hippocampus<br>Alessandro Matera (Lausanne, Switzerland)                 |
| 1:56 pm | T06-013B | Rewiring of glucose and lipid metabolism induced by GPR17 silencing enables the transition of oligodendrocyte progenitors to myelinating cells <b>Davide Lecca</b> (Milan, Italy) |
| 1:57 pm | T06-014B | Role of blood brain barrier <i>Drosophila</i> monocarboxylate transporters in the adaptive response to nutritional restriction.<br>Andres Gonzalez-Gutierrez (Santiago, Chile)    |
| 1:58 pm | T06-015B | Myelin lipids as nervous system energy reserves<br>Ebrahim Asadollahi (Göttingen, Germany)                                                                                        |
| 1:59 pm | T06-016B | Tanycyte FoxO1-dependent extracellular matrix (ECM) deposition regulates ghrelin action in AgRP neurons<br>Marta Porniece Kumar (Cologne, Germany)                                |
| 2:00 pm | T06-017B | Exploring the impact of oligodendroglial reactive oxygen species on axonal function<br><b>Urvashi Sanjay Dalvi</b> (Zürich, Switzerland)                                          |
| 2:01 pm | T06-018B | Understanding the Effect of the Ketogenic Diet on the Mouse Brain Using Genetically Encoded Metabolite Sensors<br>Rachel Meister (Zurich, Switzerland)                            |
| 2:02 pm | T06-019B | Extracellular pH is brain state dependent.<br><b>Zuzanna Bojarowska</b> (Copenhagen N, Denmark)                                                                                   |



| 2:03 pm | T06-020B | L-serine-mediated PKM2 allosteric regulation coordinates L-serine synthesis, glycolytic rate and lactate release<br>Emmanuel Than-Trong (Fontenay-aux-Roses, France)                                       |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:04 pm | T06-021B | Characterization of Microglial Lipid Metabolism in Progressive Multiple Sclerosis<br>Monica E. Garcia-Segura (Cambridge, UK)                                                                               |
| 2:05 pm | T06-022B | Noradrenaline-induced L-lactate production in rat astrocytes requires transit through the glycogen shunt which is dependent on cannabinoid signalling<br>Katja Fink (Ljubljana, Slovenia)                  |
| 2:06 pm | T06-023B | Astrocytic CREB neuroprotection in experimental traumatic brain injury is associated with regulation with energetics and lipid metabolism: role of lactate<br>Irene Fernández González (Bellaterra, Spain) |
| 2:07 pm | T07-001B | Viral-mediated fluorescent labelling of the extracellular matrix for live brain tissue imaging.<br><b>Mario Fernandez-Ballester</b> (Leioa, Spain)                                                         |
| 2:08 pm | T07-002B | Distinct cell-free extracellular matrix composition between multiple sclerosis and toxin-induced demyelinated lesions<br>Jody M. de Jong (Groningen, Netherlands)                                          |
| 2:09 pm | T07-003B | Role of cell adhesion molecules in oligodendrocyte-T cell interactions in MS<br>Haritha L. Desu (Montreal, Canada)                                                                                         |
| 2:10 pm | T07-004B | Phosphorylation and shedding of <i>DDR1</i> in the HOG16 human oligodendroglial cell line upon collagen IV incubation<br>Selena Aranda Castel (Reus, Spain)                                                |
| 2:11 pm | T07-005B | Astrocytic hydrogen peroxide ( $H_2O_2$ ) and its role in collagen production and scar formation <b>Jae-Hun Lee</b> (Daejeon, South Korea)                                                                 |
| 2:12 pm | T07-006B | <i>Cspg4</i> governs oligodendrocyte lineage cell development<br>Samantha Bromley-Coolidge (Denver, USA)                                                                                                   |
| 2:13 pm | T08-011B | Astrocyte-specific gene targets of the transcription factor ZEB1<br>Niharika Singh (Cardiff, UK)                                                                                                           |





| 2:14 pm | T08-012B | snRNAseq of microglia and astrocytes in a model of remyelination failure<br><b>Katie Emberley</b> (Portland, USA)                                                                                                            |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:15 pm | T08-013B | Spatial gene expression profiling predicts multiple sclerosis lesion evolution<br>Marion H.C. Wijering (Groningen, Netherlands)                                                                                              |
| 2:16 pm | T08-014B | Effective extraction of polyribosomes exposes gene expression strategies in primary astrocytes<br>Shir Mandelboum (Tel Aviv, Israel)                                                                                         |
| 2:17 pm | T08-015B | The transcription factor Zfh2 acts in glia to regulate CNS development and motor behavior<br>Adela Ralbovska (Montreal, Canada)                                                                                              |
| 2:18 pm | T08-016B | A single-cell transcriptomics approach to identifying senescent retinal glia via the SenMayo panel.<br><b>Samyuktha Suresh</b> (Singapore, Singapore)                                                                        |
| 2:19 pm | T08-017B | A far upstream enhancer is a crucial regulator of catecholamine-dependent expression of the neurotrophin <i>Bdnf</i> in rodent astrocytes<br>Annela Avarlaid (Tallinn, Estonia)                                              |
| 2:20 pm | T08-018B | All roads lead to astrocyte identity – Different human induced pluripotent stem cell to astrocyte differentiation protocols reveal high transcriptomic concordance with primary astrocytes<br>Luisa Egert (Planegg, Germany) |
| 2:21 pm | T09-010B | Heliobacter pylori outer membrane vesicles induce astrocyte reactivity and demyelination in organotypic cerebellar slice cultures<br>Esteban Palacios (Groningen, Netherlands)                                               |
| 2:22 pm | T09-011B | Human iPSCs-derived astrocytes and oligodendrocytes as the first Autosomal Dominant Leukodystrophy-relevant cellular models<br>Martina Lorenzati (Orbassano (Turin), Italy)                                                  |
| 2:23 pm | T09-012B | Dynamic clearance of dying oligodendrocytes by single microglia<br>Genaro E. Olveda (Hanover, USA)                                                                                                                           |
|         |          |                                                                                                                                                                                                                              |





| 2:24 pm | T09-013B | Glia cells in a mouse model of stuttering disorder: a morphometric study<br>Afuh Adeck (Frederick, USA)                                                                   |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:25 pm | T09-014B | Reconstructing glial dynamics and interactions underlying early pathological events in Alzheimer's mouse models<br>Anna Schmidtner (Jerusalem, Israel)                    |
| 2:26 pm | T09-015B | Exclusive perivascular localization of AQP4ex in mouse brain after stereotaxic lentiviral gene delivery Gianluca Signorile (Bari, Italy)                                  |
| 2:27 pm | T09-016B | Microglia and astrocytes regulate adult hippocampal neurogenesis in an inflammatory context in vitro<br>Marta Vilademunt Alcaide (Prilly, Switzerland)                    |
| 2:28 pm | T09-017B | Coupling of calcium events in the cortical astrocyte network<br>Max Collard (San Francisco, USA)                                                                          |
| 2:29 pm | T10-016B | Genetic analysis of wrapping glia development in Drosophila<br><b>Marie Baldenius</b> (Münster, Germany)                                                                  |
| 2:30 pm | T10-017B | Unveiling the diversity of cerebellar astrocytes: insights into their molecular identities, development and functions <b>Valentina Cerrato</b> (Orbassano, Torino, Italy) |
| 2:31 pm | T10-018B | Functional and molecular characterization of the Olig2-AS, an astrocyte subtype <b>Clemence Debacq</b> (Toulouse cedex 09, France)                                        |
| 2:32 pm | T10-019B | The Key Players of CNS function: Exploring the Effects of Region, Age, and Sex on Human Glia Diversity Luise A. Seeker (Edinburgh, UK)                                    |
| 2:33 pm | T10-020B | Investigating a novel microglial phenotype in a genetic model of Parkinson's disease<br>Gurkirat Kaur (Padova, Italy)                                                     |
| 2:34 pm | T10-021B | Astrocyte heterogeneity in Alzheimer's disease<br><b>Yiannis Poulot</b> (Fontenay-aux-roses, France)                                                                      |




| 2:35 pm | T10-022B | Characterization of astrocyte reactivity in a model of encephalopathy of prematurity<br>Ariane Heydari Olya (Paris, France)                                                                                              |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:36 pm | T10-023B | Characterization of microglial states including dark microglia during postnatal development, in health and maternal immune activation<br>Sophia Loewen (Victoria, Canada)                                                |
| 2:37 pm | T10-024B | Molecular heterogeneity of ischemic injury-induced reactive astrocytes.<br>Rachel D. Kim (New York, USA)                                                                                                                 |
| 2:38 pm | T10-025B | Exploring myelinating glial plasticity at motor exit point transition zones<br>Laura Fontenas (Jupiter, USA)                                                                                                             |
| 2:39 pm | T10-026B | Alterations of Astrocytic Aquaporin 4 expression and morphological distributions in Down syndrome with Alzheimer's Disease<br>Cherie Lepe (Stringer) (Irvine, USA)                                                       |
| 2:40 pm | T10-027B | Comparison of olfactory ensheathing cells from the olfactory bulb and olfactory mucosa revealing differences in migration patterns<br>Sophie Steinwenter (Wien, Austria)                                                 |
| 2:41 pm | T10-028B | Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male mice under homeostatic conditions.<br>Eleonora De Felice (Rome, Italy)                                            |
| 2:42 pm | T10-029B | Investigation of astroglial heterogeneity in the human cortex and caudate nucleus<br>Paulina Hoppa (Budapest, Hungary)                                                                                                   |
| 2:43 pm | T10-030B | Radial glia and progenitor diversity in the brain of the fast-aging African turquoise killifish<br><b>Caroline Zandecki</b> (Leuven, Belgium)                                                                            |
| 2:44 pm | T11-042B | MeCP2 deficiency in astrocytes alters synaptogenesis through IL-6 mediated non-cell autonomous mechanism<br>Martina Breccia (Milano, Italy)                                                                              |
| 2:45 pm | T11-043B | N-acetyl cysteinerescues cortical glial cell populations and results in functional improvements in a mouse model of primary autosomal recessive microcephaly 17 (MCPH17)<br>Maryam Khastkhodaei Ardakani (Torino, Italy) |



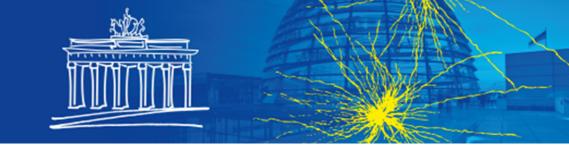


| 2:46 pm | T11-044B | Sex specific differences in the secretome of oligodendrocyte progenitor cells post hyperoxic stress<br>Donna E. Sunny (Greifswald, Germany)                                        |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:47 pm | T11-045B | Microglia Actively Remove NR1 Autoantibody-Bound NMDA Receptors And Associated Post-Synaptic Proteins In Neuron Microglia Co-cultures.<br>Kazi Atikur Rahman (Berlin, Germany)     |
| 2:48 pm | T11-046B | Examining the regulation of resident mRNAs in myelin plasticity<br>Kadidia P. Adula (Aurora, USA)                                                                                  |
| 2:49 pm | T11-047B | Remyelination failure triggers MAP3K-mediated neurodegeneration<br>Greg J. Duncan (Portland, USA)                                                                                  |
| 2:50 pm | T11-048B | Astrocyte store-released calcium perturbation disrupts glutamatergic synapse development<br>Isabella Farhy-Tselnicker (College Station, USA), Gillian Imrie (College Station, USA) |
| 2:51 pm | T11-049B | Rapid differentiation of induced pluripotent stem cells towards mature astrocytes<br>Imke M.E. Schuurmans (Nijmegen, Netherlands)                                                  |
| 2:52 pm | T11-050B | Adenosine mediates metabolic signaling between neurons and astrocytes<br>Shefeeq M. Theparambil (London, UK)                                                                       |
| 2:53 pm | T11-051B | Tuberous Sclerosis Complex iPSC-derived cultures reveal the role of astrocyte-secreted factors in neuronal development<br>Stephanie Dooves (Amsterdam, Netherlands)                |
| 2:54 pm | T11-052B | SOD1G93A astrocyte-derived extracellular vesicles induce motor neuron death by a miRNA-155-5p mediated mechanism. <b>Soledad Marton</b> (Montevideo, Uruguay)                      |
| 2:55 pm | T11-053B | BDNF Signaling onto Astrocyte TrkB.T1 Drives Astrocyte Structural Plasticity Supporting Glutamatergic Synaptogenesis<br>Michelle L. Olsen (Blacksburg, USA)                        |
| 2:56 pm | T11-054B | Cortical astrocyte N-Methyl-D-Aspartate receptors influence whisker barrel activity and sensory discrimination<br>Noushin Ahmadpour (Winnipeg, Canada)                             |



| 2:57 pm | T11-055B | Astrocytic contribution in spasticity after spinal cord injury<br><b>Tony Barbay</b> (Marseille, France)                                                                                       |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:58 pm | T11-056B | Unravelling glia-specific contributions to neuronal network phenotypes: engineering a human stem cell-derived tri-culture on multielectrode arrays<br>Annika Mordelt (Nijmegen, Netherlands)   |
| 2:59 pm | T11-057B | Population calcium activity in cortical astrocytes during mouse locomotion<br>Anna Fedotova (Moscow, Russia)                                                                                   |
| 3:00 pm | T11-058B | Bioelectrical properties in oligodendrocyte precursor cells drive differences in their proliferation capacity<br>Helena Pivonkova (Cambridge, UK)                                              |
| 3:01 pm | T11-059B | Investigating mechanisms by which oligodendrocyte precursor cells regulate arbour size of retinal ganglion cell axons in the zebrafish visual system.<br>Emma Dumble (Edinburgh, UK)           |
| 3:02 pm | T11-060B | Perinatal inflammation impairs neuroglia plasticity of cerebellum in a sex-dependent manner<br>Maryam Ardalan (Gothenburg, Sweden)                                                             |
| 3:03 pm | T11-061B | Microglia regulate autonomic function via modulating pre-sympathetic neurons in the hypothalamic paraventricular nucleus<br>Peng Shi (Hangzhou, China)                                         |
| 3:04 pm | T11-062B | Tunneling nanotubes-mediated functional interactions between neuronal and microglial cells<br>Ranabir Chakraborty (Paris, France)                                                              |
| 3:05 pm | T11-063B | Microglial Dysfunction and Synaptic Alterations within Inflamed Circuits in the Degenerating Visual System of Multiple Sclerosis-relevant mouse models<br>Sebastian Werneburg (Ann Arbor, USA) |
| 3:06 pm | T11-064B | Investigating neuron-oligodendrocyte precursor cell communication using dual-colour calcium imaging in a zebrafish <i>in vivo</i> model<br>Patricia Bispo (Edinburgh, UK)                      |
| 3:07 pm | T11-065B | Development of a murine 3D-tri-culture approach for the analysis of neuron-glia interactions<br>Christian Schmeer (Jena, Germany)                                                              |




| 3:08 pm | T11-066B | Conversations with friends: Examining pyramidal cells and microglia interaction during development <b>Fong Kuan Wong</b> (Manchester, UK)                                               |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:09 pm | T11-067B | Effect of a peptide secreted by astrocytes on adult hippocampal neurogenesis <b>Charline Carron</b> (Lausanne, Switzerland)                                                             |
| 3:10 pm | T11-068B | Human iPSC-derived microglia in 3D MICro-brains: A three-dimensional myelination & inflammation cortical network platform <b>Sakshi Bansal</b> (Rotterdam, Netherlands)                 |
| 3:11 pm | T11-069B | Locomotion differently changes the mitochondria redox state and $H_2O_2$ production in astrocytes and neurons <b>Alisa Tiaglik</b> (Jiaxing, China)                                     |
| 3:12 pm | T11-070B | (Pro)Renin-induced microglial proinflammatory response enhances dopaminergic neuronal death<br>Andrea Lopez-Lopez (Santiago de Compostela, Spain)                                       |
| 3:13 pm | T11-071B | Impact of aberrant neuronal activity on oligodendrocyte lineage cells in a mouse model of focal cortical dysplasia<br>Bohdana Hruskova (Prague 5, Czech Republic)                       |
| 3:14 pm | T11-072B | Investigations on the contribution of the astrocytic connexin-43 in the pathogenesis of spinal muscular atrophy in a mouse model <b>Schahin Salmanian</b> (Essen, Germany)              |
| 3:15 pm | T11-073B | Human microglia enhance developmental neuronal maturation and induce synapse activation<br>Balazs Varga (Cambridge, UK)                                                                 |
| 3:16 pm | T11-074B | Computational modeling of neuron-astrocyte interactions in networks: Experiments, theory, and models <b>Tiina Manninen</b> (Tampere, Finland)                                           |
| 3:17 pm | T11-075B | Regulation of striatal synaptic connectivity by astrocytic phagocytosis<br>Ji-young Kim (Daegu, South Korea)                                                                            |
| 3:18 pm | T11-076B | Improved gliotransmission by increasing intracellular Ca <sup>2+</sup> via TRPV1 on multi?walled carbon nanotube platforms<br>Won-Seok Lee (Cheonan-si, Chungcheongnam-do, South Korea) |

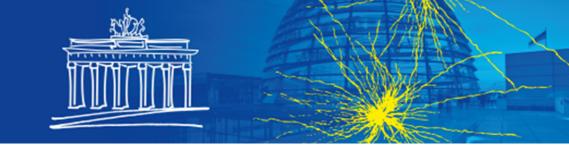




| 3:19 pm | T11-077B | Neuronal Response to <i>In Vivo</i> Autoimmune Astrocyte Ablation in the Mouse Cortex<br>Nicola B. Schmid (Zurich, Switzerland)                                                           |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:20 pm | T11-078B | Neuronal activity modulates microglia phenotype in repair through microglia-node of Ranvier interaction.<br>Clement Perrot (Paris, France)                                                |
| 3:21 pm | T11-079B | Remission after stress via enriched environment increases hippocampal dendritic spine density independent of microglia<br>Fabrizio Musacchio (Bonn, Germany)                              |
| 3:22 pm | T11-080B | Radial glial action potentials initiate fetal motor activity<br>Jean-Marie Mangin (Paris, France)                                                                                         |
| 3:23 pm | T11-081B | The role of the postsynaptic scaffold protein SHANK3 in NG2-glia in the adult brain and in autism spectrum disorder<br>Katrin Volbracht (Ulm, Germany)                                    |
| 3:24 pm | T11-082B | Microglia mediate the plasticity-promoting effect of TNF $\alpha$<br><b>Dimitrios Kleidonas</b> (Freiburg, Germany)                                                                       |
| 3:25 pm | T12-011B | Cerebral ischemia model optimised for two-photon imaging<br>María Isabel Ardaya Franco (Leioa, Spain)                                                                                     |
| 3:26 pm | T12-012B | Cell-type dependent regulation of stemness in glioblastoma cells through Bafilomycin A1 during hypoxia and acidosis<br>Eleni Roussa (Freiburg, Germany)                                   |
| 3:27 pm | T12-013B | Spatiotemporal transcriptomic landscape of experimental ischemic brain injury<br>Lukas Valihrach (Vestec, Czech Republic)                                                                 |
| 3:28 pm | T12-014B | The role of astrocyte dysfunction in the evolution of spreading depolarization during ischemia <b>Rita Frank</b> (Szeged, Hungary)                                                        |
| 3:29 pm | T12-015B | Evaluation of the deleterious effect of hyperglycemia in experimental stroke: role of the hypoxia-inducible factor (HIF).<br><b>María Isabel Hernández Cortés</b> (Leioa, Vizcaya, Spain) |

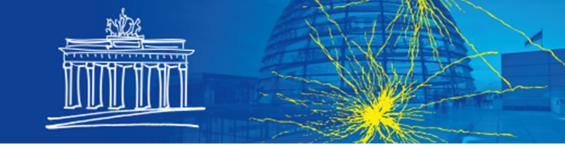




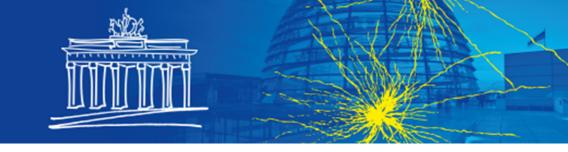

| 3:30 pm | T12-016B | Inhibition of peptidylarginine deiminase 4 confers neuroprotective effects in the post-ischemic brain via anti-inflammatory effects <b>Song-I SeoI</b> (Incheon, South Korea)         |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:31 pm | T12-017B | HMGB1-mediated hepcidin upregulation in astrocytes causes an acute iron surge and subsequent ferroptosis in the post-ischemic brain <b>Dashdulam Davaanyam</b> (Incheon, South Korea) |
| 3:32 pm | T12-018B | Oligodendrocytes are key players in the montelukast-induced protection against stroke<br>Majeda Muluhie (Milan, Italy)                                                                |
| 3:33 pm | T12-019B | Targeting Ionotropic Glutamate Receptors in Models of Focal Cerebral Ischemia<br>Daniel Morgan (Plymouth, UK)                                                                         |
| 3:34 pm | T12-020B | Effect of Ischemia on Oligodendrocyte Morphology in the Mouse Optic Nerve<br><b>Naomi H. Lynham</b> (Plymouth, UK)                                                                    |
| 3:35 pm | T14-027B | Dock1 Regulates Developmental and Regenerative Schwann Cell Myelination<br>Ryan A. Doan (Portland, USA)                                                                               |
| 3:36 pm | T14-028B | Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease<br>Mar Bosch Queralt (Leipzig, Germany)                                                |
| 3:37 pm | T14-029B | Caveolin-1 as a novel interaction partner of PMP22 gives insights into the regulation and dysregulation of peripheral nerve myelination<br>Daniela Stausberg (Göttingen, Germany)     |
| 3:38 pm | T14-030B | A humanized mouse model to study remyelination after demyelination in spinal cord.<br>Beatriz Garcia Diaz (Malaga, Spain)                                                             |
| 3:39 pm | T14-031B | Autophagic degradation of CNS myelin maintains axon integrity<br><b>Niki Ktena</b> (Heraklion, Greece)                                                                                |
| 3:40 pm | T14-032B | Role of clathrin-mediated endocytosis in myelinating oligodendrocytes<br>Sophie Siems (Göttingen, Germany)                                                                            |





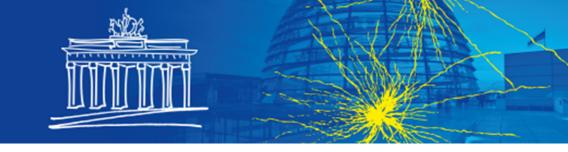

| 3:41 pm | T14-033B | Molecular diversity of CNS myelin<br><b>Silya Gargareta</b> (Göttingen, Germany)                                                                                                                   |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:42 pm | T14-034B | Toxic CUG RNA repeats disrupt developmentally-regulated splicing in oligodendrocytes causing transient hypomyelination in a mouse model of myotonic dystrophy<br>Louison Lallemant (Paris, France) |
| 3:43 pm | T14-035B | Region-specific myelin changes along the mouse lifespan<br><b>Sebastian Timmler</b> (Cambridge, UK)                                                                                                |
| 3:44 pm | T14-036B | High Dose Pharmaceutical Grade Biotin (MD1003) Accelerates Differentiation of Murine and Grafted Human Oligodendrocyte Progenitor Cells In Vivo<br>Sabah Mozafari (Paris, France)                  |
| 3:45 pm | T14-037B | Mechanisms controlling neuroblasts migration and reprogramming during myelin repair.<br>Marie Falque (Marseille, France)                                                                           |
| 3:46 pm | T14-038B | Visualizing live myelinic channels for a mechanistic understanding of myelin wrapping<br>Daryan Chitsaz (Montreal, Canada)                                                                         |
| 3:47 pm | T14-039B | Are there different mechanisms of oligodendrocyte recruitment in regeneration and plasticity?<br>Laura J. Hoodless (Edinburgh, UK)                                                                 |
| 3:48 pm | T14-040B | Myelin plasticity in ventral tegmental area is required for opioid reward<br><b>Belgin Yalcin</b> (Stanford, USA)                                                                                  |
| 3:49 pm | T14-041B | Exploring the role of voltage-gated calcium channel subunits in activity-dependent myelination in the central nervous system<br>Wenjing Sun (Columbus, USA)                                        |
| 3:50 pm | T14-042B | Novel mechanism of myelination regulation in neurodevelopmental disorders<br>Gilad Levy (Tel-Aviv, Israel)                                                                                         |
| 3:51 pm | T14-043B | Effect of axon stiffness on myelin ensheathment by oligodendrocytes<br>Mingyu Yang (Cambridge, USA)                                                                                                |



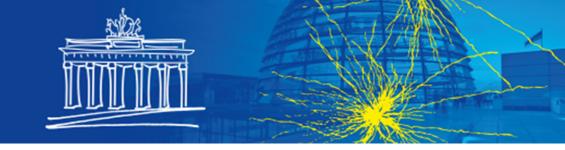



| 3:52 pm | T14-044B | Prolactin receptor deficiency promotes hypomyelination in white matter tracts during central nervous system maturation in mice<br>Ana Luisa Ocampo Ruiz (Querétaro, Mexico)                           |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:53 pm | T14-045B | Imbalance of NRG1 type III-ERBB2/3 signaling underlies altered myelination in Charcot-Marie-Tooth disease type 4H<br>Valerie Delague (Marseille, France)                                              |
| 3:54 pm | T14-046B | Citron-kinase loss leads to hypomyelination <i>via</i> cell autonomous and non-cell autonomous mechanisms<br>Martino Bonato (Turin, Italy)                                                            |
| 3:55 pm | T14-047B | Exploring the Pathogenic Role of Claudin-11 Mutations in Hypomyelinating Leukodystrophy Using a Novel Humanized Knock-In Mouse Model<br>Oguz K. Ozgoren (Vancouver, Canada)                           |
| 3:56 pm | T14-048B | RhoA Is a Putative Negative Regulator of CNS Myelination<br>Raquel Vale Silva (Porto, Portugal)                                                                                                       |
| 3:57 pm | T14-049B | Using human iPSC-derived organoids to model demyelination, oligodendrocyte dysfunction and microglial toxicity in Multiple Sclerosis<br>Shwathy Ramesan (Melbourne, Australia)                        |
| 3:58 pm | T14-050B | Astrocyte-specific deletion of the volume-regulated anion channel does not reproduce key aspects of Megalencephalic Leukoencephalopathy with subcortical Cysts<br>Sven Kerst (Amsterdam, Netherlands) |
| 3:59 pm | T14-051B | Prostaglandin D2 synthase controls Schwann cells metabolism<br>Rosa La Marca (Milan, Italy)                                                                                                           |
| 4:00 pm | T15-007B | Nanoscale interfaces alter adult mice neurospheres adhesion morphology and differentiation<br>Chiara Lazzarini (Bologna, Italy)                                                                       |
| 4:01 pm | T15-008B | Effects of peripheral trauma on adult neurogenesis and the reaction of glial cells in the brain<br>Marsela Hakani (Ulm, Germany)                                                                      |
| 4:02 pm | T15-009B | Noradrenergic agonists attenuate microglial inflammation and impairments in hippocampal neurogenesis induced by whole-brain irradiation<br>Isabeau De Bie (Ghent, Belgium)                            |






| 4:03 pm | T15-010B | Galectin-3 regulates apical-basal polarity in the developing forebrain<br>Francis Szele (Oxford, UK)                                                                                     |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:04 pm | T15-011B | Developmental origin of enteric glial cell plasticity<br>Anna Laddach (London, UK)                                                                                                       |
| 4:05 pm | T15-012B | Striatal astrocytes generate a novel neuron type that transiently integrates into damaged circuits <b>Giulia Nato</b> (Orbassano, Italy)                                                 |
| 4:06 pm | T16-056B | miR-21 is deregulated in <i>ex vivo</i> and <i>in vitro</i> models of demyelination and neuroinflammation<br>María Muñoz San Martín (Dublin, Ireland)                                    |
| 4:07 pm | T16-057B | Brain Inflammation Triggers Macrophage Invasion Across the Blood-Brain Barrier in Drosophila<br>Bente Winkler (Muenster, Germany)                                                        |
| 4:08 pm | T16-058B | An <i>in vitro</i> and <i>ex vivo</i> analysis of the potential of GeIMA hydrogels as a therapeutic platform for preclinical spinal cord injury. <b>Ciara M. Walsh</b> (Dublin, Ireland) |
| 4:09 pm | T16-059B | Immunotherapy-related cognitive impairment after CAR T cell therapy in mice<br>Anna Geraghty (Palo Alto, USA)                                                                            |
| 4:10 pm | T16-060B | Choroid Plexus Immune Activation and Barrier Integrity Breakdown in Amyotrophic Lateral Sclerosis Mouse Model<br>Anna Dong (Cambridge, USA)                                              |
| 4:11 pm | T16-061B | Effects of influenza A virus infection on hippocampal neuron structure and function in aged wild-type mice <b>Shirin Hosseini</b> (Braunschweig, Germany)                                |
| 4:12 pm | T16-062B | Incorporation of human iPSC-derived microglia into test systems to study early brain development <b>Chiara S. Wolfbeisz</b> (Konstanz, Germany)                                          |
| 4:13 pm | T16-063B | Forced polarisation of microglia by IL-13 is modified by microenvironmental context.<br>Emmanuelle D. Aiyegbusi (Dublin, Ireland)                                                        |




| 4:14 pm | T16-064B | Manganese-induced microglial LRRK2 hyper kinase activity induces neuroinflammation via Rab10 in mice, which is further exacerbated in LRRK2 G2019S mutation<br>Eunsook Lee (Tallahassee, USA) |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:15 pm | T16-065B | Impact of diesel-exhaust derived air pollution on transcriptome and functionality of human iPSC-derived microglia<br><b>Sohvi Ohtonen</b> (Kuopio, Finland)                                   |
| 4:16 pm | T16-066B | Microglial impairment as a novel basis for hypothalamic dysfunction in Prader-Willi Syndrome<br>Felipe Correa da Silva (Amsterdam, Netherlands)                                               |
| 4:17 pm | T16-067B | Modulation of neuroinflammation by cannabinoids and cannabis cultivars: possible implications for multiple sclerosis<br>Sigal Fleisher-Berkovich (Beer-Sheva, Israel)                         |
| 4:18 pm | T16-068B | Microglial DLG4 functions in Neurodevelopmental Disorders associated to Prematurity<br>Florence Julien-Marsollier (paris, France)                                                             |
| 4:19 pm | T16-069B | Establishing an <i>ex-vivo</i> model of neuro-inflammatory driven white matter pathology and its use as a drug testing platform<br>Verity F.T. Mitchener (Plymouth, UK)                       |
| 4:20 pm | T16-070B | THIK-1 controls microglial interleukin-1ß release in the human brain<br>Ali Rifat (Berlin, Germany)                                                                                           |
| 4:21 pm | T16-071B | Fucoxanthin's therapeutic and protective properties prevented UVB-induced astrocyte activation of the trigeminal ganglion in a rat model.<br>Shiu-Jau Chen (New Taipei City, Taiwan)          |
| 4:22 pm | T16-072B | Maternal obesity impairs neuroglia plasticity in the cerebellum of adult offspring<br><b>Seyedeh Marziyeh Jabbari Shiadeh</b> (Göteborg, Sweden)                                              |
| 4:23 pm | T16-073B | Endogenous Sox8 is a critical factor for oligodendroglial cell repletion and myelin integrity in the cuprizone model of demyelination<br>David Freudenstein (Regensburg, Germany)             |
| 4:24 pm | T16-074B | Additive deleterious effects of delivery mode on perinatal brain injuries: microbiota's fault.<br><b>Cindy Bokobza</b> (Paris, France)                                                        |



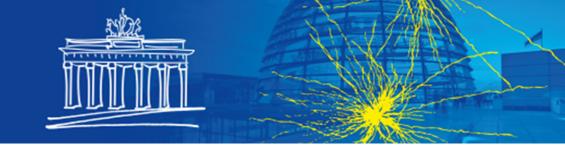


| 4:25 pm | T16-075B | The effects of chronic high-dose morphine on microgliosis and the microglial transcriptome in rat spinal cord<br>Fredrik H. Ahlström (Helsinki, Finland)                                                    |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:26 pm | T16-076B | Assessment of the therapeutic potential of MaR1 for the treatment of acute Spinal Cord Injury and characterization of its receptors in the lesioned spinal cord <b>Marc Caro Cantón</b> (Bellaterra, Spain) |
| 4:27 pm | T16-077B | Interplay Between Microglial Receptor TREM2 and Maternal Immune Challenges in Schizophrenia<br>Matteo Bizzotto (Pieve Emanuele, Italy)                                                                      |
| 4:28 pm | T16-078B | Targeting PPARδ/β pathways to regulate inflammatory responses in human microglia <i>in vitro.</i><br><b>Rawan Aloufi</b> (Nottingham, UK)                                                                   |
| 4:29 pm | T16-079B | A new cerebral organoid culture model to study microglia during neurodevelopment and neuropathology and the effects of novel drugs targeting microglia<br>Alice Buonfiglioli (New York, USA)                |
| 4:30 pm | T16-080B | Interleukin-12-driven crosstalk in Alzheimer's disease affecting oligodendrocyte survival and myelination<br>Maria Geesdorf (Berlin, Germany)                                                               |
| 4:31 pm | T16-081B | The role of NG2-glia in neuroinflammation<br><b>Maja Papic</b> (Mainz, Germany)                                                                                                                             |
| 4:32 pm | T16-082B | FABP7 expression modulates the response of astrocytes to inflammatory stimuli<br>Marcelo R. Vargas (Madison, USA)                                                                                           |
| 4:33 pm | T16-083B | Microglial CD300f immune receptor contributes to synaptic pruning and depression by recruiting CCR2+ macrophages<br>Daniela Alí (Montevideo, Uruguay)                                                       |
| 4:34 pm | T16-084B | Single-cell spatial proteomics approach to study microglial cell phenotype in health and pathology using CODEX multiplex imaging technology<br>Paula Sanchez-Molina (Portland, USA)                         |
| 4:35 pm | T16-085B | Cytosolic HMGB1 mediates LPS-induced autophagy in microglia by interacting with NOD2 and suppresses its proinflammatory function <b>Sang-A Oh</b> (Incheon, South Korea)                                    |

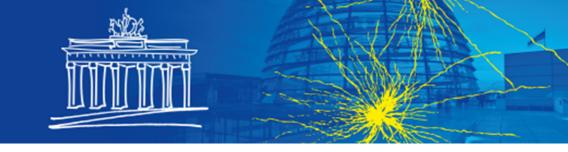


| 4:36 pm | T16-086B | Complement in Glial Components of the Sciatic Nerve<br>Shani Berkowitz (Ramat Gan, Israel)                                                                              |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:37 pm | T16-087B | LRRK2 G2019S attenuates repair of brain injury by reducing osteopontin expression and release of monocytic exosomes<br>Eun-Hye Joe (Suwon, South Korea)                 |
| 4:38 pm | T16-088B | IFNγ induced inflammatory profile on human microglia is enhanced on interaction with alpha-synuclein fibrils <b>Jonna Niskanen</b> (Kuopio, Finland)                    |
| 4:39 pm | T16-089B | Epigenetic regulation of phosphatidylinositol 3-kinase (PI3K) by miR-21-5p and HDAC3i in murine microglia<br><b>S. Thameem Dheen</b> (Singapore, Singapore)             |
| 4:40 pm | T16-090B | The JAK1/2-inhibitor ruxolitinib prevents the lasting interferon-gamma-mediated priming of microglia (brain macrophages)<br>Marc Schulz (Heidelberg, Germany)           |
| 4:41 pm | T16-091B | Role of the immunoreceptor CD200R1 in neuroinflammation induced by spinal cord injury and LPS challenge<br>Natalia Lago Pérez (Bellaterra, Spain)                       |
| 4:42 pm | T16-092B | Studying the heterogeneity of extracellular vesicles upon neuroinflammatory stimulation: comparing an in vitro, ex vivo and in vivo set-up Lien Cools (Leuven, Belgium) |
| 4:43 pm | T16-093B | Persistent infection of seasonal and pandemic influenza viruses in a hiPSC-derived neural model<br>Feline F.W. Benavides (Rotterdam, Netherlands)                       |
| 4:44 pm | T16-094B | IL-38 characterization in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis<br><b>Néstor López González</b> (Bellaterra (Cerdanyola del Vallès), Spain)  |
| 4:45 pm | T16-095B | Lipidomic profile changes associated with loss of phagocytic activity in iron-treated microglia<br>Sylvester, Shu Ming Wong (Singapore, Singapore)                      |
| 4:46 pm | T16-096B | Influenza vaccine is able to prevent neuroinflammation triggered by H7N7 IAV infection <b>Luisa Demuth</b> (Braunschweig, Germany)                                      |

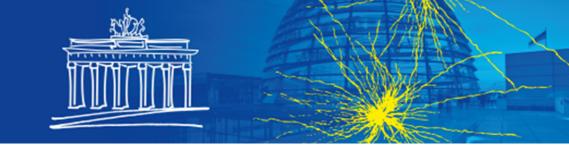





| 4:47 pm | T16-097B | Role of the cannabinoid receptor type 2 in microglia function in a mouse model ofAlzheimer´s disease.<br><b>M Teresa Grande</b> (Pozuelo de Alarcón, Spain)                                                       |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:48 pm | T16-098B | Mitochondrial dysfunction in microglia induced by sleep disorders promotes Neuroinflammation<br>Yachong Hu (Xi'an, China)                                                                                         |
| 4:49 pm | T16-099B | In vitro characterization of human SOD1 <sup>G93A</sup> ALS embryonic stem cell-derived microglia<br>Joana Garcia Garcia (Bellaterra, Spain)                                                                      |
| 4:50 pm | T16-100B | Large-scale proteomic analysis of male and female mice revealed sex-specific features following CNS injury.<br>Veronika Schwarz (Planegg-Martinsried, Germany)                                                    |
| 4:51 pm | T16-101B | Addressing human astrogliosis in a hiPSC-derived 3D CNS model<br>Catarina M. Gomes (Oeiras, Portugal)                                                                                                             |
| 4:52 pm | T16-102B | Shared inflammatory glial cell signature after brain injury revealed by spatial, temporal and cell-type-specific profiling of the murine cerebral cortex<br>Christina Koupourtidou (Planegg-Martinsried, Germany) |
| 4:53 pm | T16-103B | Proteomic and Lipidomic characterization of peripheral blood exosomes as predictive biomarker in patients with Multiple Sclerosis<br>Claudia Palazzo (Bari, Italy)                                                |
| 4:54 pm | T16-104B | In vivo microglial BIN1 deletion following LPS-induced neuroinflammation regulates microglia proliferation and inflammatory response<br>Maria Margariti (Athens, Greece)                                          |
| 4:55 pm | T16-105B | Does diroximel fumarate protect against ferroptosis?<br>Katinka Fischer (Düsseldorf, Germany)                                                                                                                     |
| 4:56 pm | T16-106B | Loss of Cox-1 attenuates microglia reactivity after optic nerve injury<br>Florianne E. Schoot Uiterkamp (Klosterneuburg, Austria)                                                                                 |
| 4:57 pm | T16-107B | NLRP3 regulates microglial metabolic state, impacting cellular function in Alzheimer's disease<br>Roisin M. McManus (Bonn, Germany)                                                                               |

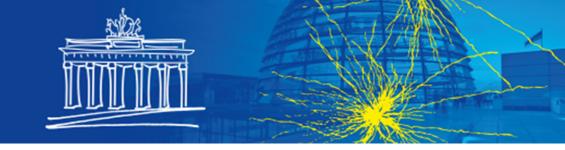



| 4:58 pm | T16-108B | Ageing and infection-induced neuroinflammation enhance microglial synaptic engulfment<br><b>Tabea Linde</b> (Magdeburg, Germany)                                                                   |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:59 pm | T16-109B | A major role for type I interferon (IFNs-I) response and RNA-dependent kinase R (PKR) in directly activating microglia in the context of Zika virus infection<br>Violaine Bortolin (Paris, France) |
| 5:00 pm | T16-110B | Cellular and molecular mechanisms of the interferon-responsive gene OAS1 in microglia for Alzheimer's disease<br>Naciye Magusali (London, UK)                                                      |
| 5:01 pm | T18-001B | Interleukin-1 signaling in the blood-brain barrier influences the behavioral response to chronic social stress<br><b>Eva Schramm</b> (Mainz, Germany)                                              |
| 5:02 pm | T18-002B | Astrocyte gap junctions regulate neuronal excitability and neurovascular coupling in the mouse cortex<br>Danica Bojovic (Portland, USA)                                                            |
| 5:03 pm | T18-003B | Terminal Schwann cells and Kranocytes: connecting Neuromuscular Junctions to vascular network in health, injury and disease.<br><b>Sandra Fuertes-Alvarez</b> (San Sebastian, Spain)               |
| 5:04 pm | T18-004B | Microglia change at micro- and nanoscopic scales in response to therapeutic focused ultrasound blood-brain barrier modulation<br>Elisa Gonçalves de Andrade (Victoria, Canada)                     |
| 5:05 pm | T18-005B | A network of CD163 <sup>+</sup> macrophages monitors enhanced permeability at the blood-sensory ganglion barrier<br>Harald Lund (Stockholm, Sweden)                                                |
| 5:06 pm | T19-013B | Optogenetic activation of astrocytes rescues synaptic defects and anxiety-like behavior in early life stress<br>Lan Xiao (Chongqing, China)                                                        |
| 5:07 pm | T19-014B | The effect of MeCP2 mutations on microglia phenotype and function in Rett Syndrome<br>Mara Graziani (New york, USA)                                                                                |
| 5:08 pm | T19-015B | Astrocyte-mediated phagocytosis in mood and depressive-like disorders<br>Eugenia Vivi (Regensburg, Germany)                                                                                        |






| 5:09 pm | T19-016B | Role of Astrocytic O-GlcNAcylation in Social and Cognitive Behavior <b>Prajitha Pradeep</b> (Daejeon, South Korea)                                                |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:10 pm | T19-017B | Novel mechanisms underpinning fluoxetine-induced changes to astrocytic lactate release <b>Catriona Marston</b> (Bristol, UK)                                      |
| 5:11 pm | T19-018B | Preclinical and clinical evidence for IL-6 and CCL2 as potential mediators in the pathophysiology of psychosis <b>Chloë Trippaers</b> (Baltimore, USA)            |
| 5:12 pm | T19-019B | Circulating biomarkers indicate suicidal risk in patients with major depressive disorder<br>Alejandra P. Garza (Magdeburg, Germany)                               |
| 5:13 pm | T19-020B | Effects of chronic social stress on oligodendrocyte lineage proliferation-maturation and myelin status <b>Giulia Poggi</b> (Zürich, Switzerland)                  |
| 5:14 pm | T19-021B | Synaptic competency of Hoxb8-lineage microglia in repetitive and anxiety-like behavior.<br>Kayla M. Eschenbacher (Salt Lake City, USA)                            |
| 5:15 pm | T19-022B | Blockingmethamphetamine-induced microglia reactivity by targeting glutamate receptors<br><b>Teresa Summavielle</b> (Porto, Portugal)                              |
| 5:16 pm | T19-023B | GIT1 haploinsufficiency-driven ADHD-like sypmtoms by region-specific tonic inhibition alteration Jong Min Joseph Kim (Cheonan-si, Chungcheongnam-do, South Korea) |
| 5:17 pm | T20-017B | Remyelination by UPR modulation - a novel BBB penetrating variant of MANF<br><b>Tapani Koppinen</b> (Helsinki, Finland)                                           |
| 5:18 pm | T20-018B | Mechanisms of endocannabinoid mediated remyelination in cortical organotypic slice cultures<br>Kieran Higgins (Amsterdam, Netherlands)                            |
| 5:19 pm | T20-019B | ROS TRIGGER SOX10+ OLIGODENDROCYTE ACTIVATION DURING ZEBRAFISH REGENERATION Adrian Santos-Ledo (Salamanca, Spain)                                                 |




| 5:20 pm | T20-020B | Extracellular vesicle-associated cholesterol dictates the regenerative functions of macrophages in the brain <b>Sam Vanherle</b> (Diepenbeek, Belgium)                                    |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:21 pm | T20-021B | Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis<br>Tim Vanmierlo (Hasselt, Belgium) |
| 5:22 pm | T20-022B | RT-qPCR based analysis of myelin markers in organotypic brain slices as a fast and quantitative evaluation of myelin content<br>Imane Charmarke askar (Strasbourg, France)                |
| 5:23 pm | T20-023B | Directly converted human oligodendrocytes from older donors display an age-associated phenotype<br>Farina Windener (Münster, Germany)                                                     |
| 5:24 pm | T20-024B | A new toolbox for neuroscientists: soft cryogel scaffolds for localised manipulation of neural tissue in culture.<br>Ben Newland (Cardiff, UK)                                            |
| 5:25 pm | T20-025B | Inhibition of Microglia proliferation at chronic stage after Spinal Cord Injury<br>Jean-Christophe Perez (Montpellier, France)                                                            |
| 5:26 pm | T20-026B | What regulates the early Schwann cell injury response?<br>Clara Mutschler (Cambridge, UK)                                                                                                 |
| 5:27 pm | T20-027B | N-acetyl aspartate induces oligodendroglia differentiation<br>Alessandra Dominicis (Roma, Italy)                                                                                          |
| 5:28 pm | T20-028B | Pharmacological blockade of GPR17 promotes functional and structural remyelination in the murine cuprizone model<br>Irene Knuesel (Leuven, Belgium)                                       |
| 5:29 pm | T20-029B | Transcription factors EB and E3 promote repair Schwann cell formation and expansion following PNS injury<br>Akash Patel (Newark, USA)                                                     |
| 5:30 pm | T20-030B | Investigating the glial checkpoints for circuit integration of neuronal transplants<br>Maria Fernanda Martinez Reza (Munich, Germany)                                                     |



| 5:31 pm | T20-031B | Myelin water fraction of the corpus callosum is a robust measure of remyelination in a double blind-placebo controlled clinical trial.<br>Christian Cordano (San Francisco, USA) |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:32 pm | T20-032B | Discovery and targeting of pathological cell states after spinal cord injury<br>Margherita Zamboni (Stockholm, Sweden)                                                           |
| 5:33 pm | T21-001B | Overcoming Neuronal Reprogramming Barriers as a Novel Therapeutic Strategy for ALS<br>Hussein Ghazale (Toronto, Canada)                                                          |
| 5:34 pm | T21-002B | miR-25 reprograms murine primary Müller glia into functional mature neurons<br><b>Seoyoung Kang</b> (New York, USA)                                                              |
| 5:35 pm | T21-003B | Reprogramming of glial progenitor-like cells from adult DRG with developmental transcription factors<br>Annemarie Schulte (Würzburg, Germany)                                    |
| 5:36 pm | T21-004B | Müller glia mediated retinal repair in the African turquoise killifish: a mammalian-like outcome<br><b>Pieter-Jan Serneels</b> (Leuven, Belgium)                                 |
| 5:37 pm | T21-005B | Activation of the neurogenic potential in 3D bioprinted astrocytes<br>Elisa Marozzi Cruz (Sao Paulo, Brazil)                                                                     |
| 5:38 pm | T21-006B | Influence of the starter cell in direct neuronal reprogramming<br>Giacomo Masserdotti (Planegg-Martinsried, Germany)                                                             |
| 5:39 pm | T21-007B | Investigating a gene regulatory network and developmental trajectory for promoting parvalbumin neuronal fate during reprogramming<br>Christina-Anastasia Stamouli (Lund, Sweden) |
| 5:40 pm | T21-008B | Unlocking the regenerative potential of the mammalian retina<br>Luke A. David (Montreal, Canada)                                                                                 |
| 5:41 pm | T24-013B | Defining the role of hypoxia and glioblastoma secreting factors in STAT3-mediated astrocyte reactivity<br>Sebastien Serres (Nottingham, UK)                                      |





| 5:42 pm | T24-014B | Elucidating the Role of Microglia in Neuron-Glioma Circuitry<br><b>Rebecca Mancusi</b> (Stanford, USA)                                                                                                                                     |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:43 pm | T24-015B | The Thrombin Receptor PAR1 is Located Intracellularly on Microtubules, Modulating Mitosis and Process Formation in Glioma Cells.<br>Valery Golderman (Tel-Aviv, Israel)                                                                    |
| 5:44 pm | T24-016B | Molecular mechanisms of perineural invasion in pancreatic cancer<br><b>Elia Pennati</b> (Milan, Italy)                                                                                                                                     |
| 5:45 pm | T24-017B | Hepatocellular carcinoma is associated with increased oxidative stress and glial cell activity in mouse suprachiasmatic nucleus and decreased amplitude in rhythmic spontaneous locomotor activity<br>Amira A.H. Ali (Düsseldorf, Germany) |
| 5:46 pm | T24-018B | Functional consequences of IDH1 and CIC mutations on oligodendroglioma cells of origin<br>Nina Pottier (Paris, France)                                                                                                                     |
| 5:47 pm | T24-019B | Investigating the region-specific effects of oncohistone H3 K27M in oligodendrocyte development<br>Kaitlin M. Budd (Memphis, USA)                                                                                                          |
| 5:48 pm | T24-020B | Glioblastoma cell motility depends on enhanced oxidative stress coupled with mobilization of a sulfurtransferase<br>Elias A. El-Habr (Paris, France)                                                                                       |
| 5:49 pm | T24-021B | Deep brain three-photon imaging of microglia glioma interaction at the invading front in corpus callosum<br>Felix C. Nebeling (Bonn, Germany)                                                                                              |
| 5:50 pm | T24-022B | Changes in mitochondrial redox state and lipid-protein composition of cells in tumoral and peritumoral regions under high-and low-grade gliomas<br>Kseniia Morozova (Moscow, Russia)                                                       |
| 5:51 pm | T24-023B | Interaction of Glia Cells with Glioblastoma and Melanoma Cells under the Influence of Phytocannabinoids<br>Christoph Walsleben (Halle, Germany)                                                                                            |
|         |          |                                                                                                                                                                                                                                            |





### S11 | The many faces of Schwann cells: new roles and different perspectives

| Chairs:  | Katl           | harina Scherschel (Düsseldorf, Germany); Jose Antonio Gomez Sanchez (Alicante, Spain)                                    |  |  |
|----------|----------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Presenta | Presentations: |                                                                                                                          |  |  |
| 4:00 pm  | S1101          | The role of peripheral glial cells in skin wound healing and skin cancer <b>Lukas Sommer</b> (Zurich, Switzerland)       |  |  |
| 4:30 pm  | S1102          | Schwann cell plasticity in injured human nerves and peripheral neuroblastic tumors <b>Tamara Weiss</b> (Vienna, Austria) |  |  |
| 5:00 pm  | S1103          | Glial cells in the heart - what we know and what we don't<br>Katharina Scherschel (Düsseldorf, Germany)                  |  |  |
| 5:30 pm  | S1104          | Live imaging of Schwann cells during corneal nerve regeneration<br>Jose Antonio Gomez Sanchez (Alicante, Spain)          |  |  |





#### S12 | The circuit logic of myelination - when, where, and why

| Chairs:   | Wen            | dy Xin (San Francisco, USA); Ethan Hughes (Aurora, USA)                                                                                  |  |
|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Presentat | Presentations: |                                                                                                                                          |  |
| 4:00 pm   | S1201          | tba<br><b>Cassandra Baptista</b> (Glasgow, UK)                                                                                           |  |
| 4:30 pm   | S1202          | Dynamics of Myelination on Behaviorally-Activated Axons<br>Ethan G. Hughes (Aurora, USA)                                                 |  |
| 5:00 pm   | S1203          | Oligodendrocytes and myelin restrict experience-dependent neuronal plasticity in the visual cortex <b>Wendy Xin</b> (San Francisco, USA) |  |
| 5:30 pm   | S1204          | Myelin and the temporal dynamics of corticothalamic oscillations<br>Maarten H. Kole (Amsterdam, Netherlands)                             |  |





Sunday, 9 July, 2023, 4:00 p.m. - 6:00 p.m.

### S13 | mRNA localization and translation in glial cells: local events with broad roles

Chairs: Martine Cohen-Salmon (Paris, France)

#### **Presentations:**

4:00 pm S1301 mRNA localization and translation in glial cells: local events with broad roles Martine Cohen-Salmon (Paris, France)
4:30 pm S1302 Alternative Translation and Local Translation in Glia Joseph Dougherty (SAINT LOUIS, USA)
5:00 pm S1303 tba Fu Meng-Meng (Bethesda, USA)
5:30 pm S1304 Local translation in microglial peripheral processes Jimena Baleriola (Leioa, Spain)





Sunday, 9 July, 2023, 4:00 p.m. - 6:00 p.m.

### **S14 | The tripartite synapse under metabolic stress**

| Chairs:  | Chr    | istine R. Rose (Duesseldorf, Germany); Christian Henneberger (Bonn, Germany)                                                                           |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presenta | tions: |                                                                                                                                                        |
| 4:00 pm  | S1401  | Mechanisms and pathological relevance of Na <sup>+</sup> dysregulation upon metabolic stress <b>Christine R. Rose</b> (Duesseldorf, Germany)           |
| 4:30 pm  | S1402  | Rapid changes of glutamate signaling in response to acute metabolic stress<br><b>Christian Henneberger</b> (Bonn, Germany)                             |
| 5:00 pm  | S1403  | The contribution of astrocytes to ischemia-related cerebral edema formation and increased neuronal excitability <b>Eszter Farkas</b> (Szeged, Hungary) |
| 5:30 pm  | S1404  | Data-driven modelling of the tripartite synapse under acute metabolic stress<br>Ghanim Ullah (Tampa, FL, USA)                                          |





Sunday, 9 July, 2023, 4:00 p.m. - 6:00 p.m.

### S15 | Heterogeneity and function of microglia in brain stem cell niches

Chairs: Francis Szele (Oxford, UK)

#### **Presentations:**

4:00 pm S1501 Microglia lining the lateral ventricles contribute to a unique neuroinflammatory niche Francis Szele (Oxford, UK)
4:30 pm S1502 Pre-activated microglia in the human subventricular zone Istvan Adorjan (Budapest, Hungary)
5:00 pm S1503 Microglia and adult neurogenesis in the human hippocampal neurogenic niche Maria Llorens-Martín (Madrid, Spain)
5:30 pm S1504 Specification of CNS macrophage subsets occurs postnatally in defined niches Marco Prinz (Freiburg, Germany)





Sunday, 9 July, 2023, 6:00 p.m. - 7:00 p.m.

### L04 | Plenary Lecture IV: Shane Liddelow

Chairs: Nicola Allen (La Jolla, USA)

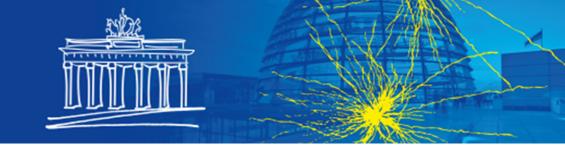
#### **Presentations:**

6:00 pm L0401 Novel reactive astrocyte sub-states and function **Shane Liddelow** (New York, USA)





Monday, 10 July, 2023, 8:30 a.m. - 9:30 a.m.


### L05 | Plenary Lecture V: Ragnhildur Thora Karadottir

Chairs: Gonçalo Castelo-Branco (Stockholm, Sweden)

#### **Presentations:**

8:30 am L0501 Neuronal activity modulates myelin plasticity and regeneration





## S16 | The role of Schwann cell metabolism in regulating neuronal function and viability

| Chairs:   | Bruc  | e Carter (Nashville, USA); Sung Ok Yoon (Columbus, USA)                                                                                                                          |
|-----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentat | ions: |                                                                                                                                                                                  |
| 10:00 am  | S1601 | Sensory neuron survival during development depends on the crosstalk with Schwann cells <b>Sung Ok Yoon</b> (Columbus, USA)                                                       |
| 10:30 am  | S1602 | The p75 neurotrophin receptor regulates Schwann cell lipid metabolism, thereby indirectly modulating sensory neuron viability <b>Bruce D. Carter</b> (Nashville, USA)            |
| 11:00 am  | S1603 | Gimme more lactate: Glial phospho-enol pyruvate kinase type 2 (PKM2) is a key factor of myelinated axons function and survival <b>Nicolas Tricaud</b> (Corbeil-Essonnes, France) |
| 11:30 am  | S1604 | Schwann cells respond to axon injury with distinct neuroprotective programs<br>Bogdan Beirowski (Columbus, OH, USA)                                                              |





## S17 | Understanding the role of cell-cell interactions involving microglia in CNS homeostasis and neuroinflammation

| Chairs:    | Rola  | nd Liblau (Toulouse, France); Ari Waisman (Mainz, Germany)                                                                                                |
|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presentati | ions: |                                                                                                                                                           |
| 10:00 am   | S1701 | Regulation and Function of Brain Border-Associated Macrophages<br>Melanie Greter (Zürich, Switzerland)                                                    |
| 10:30 am   | S1702 | Microglial A20 Protects the Brain from CD8 T-Cell-Mediated Immunopathology and is important for the brain homeostasis <b>Ari Waisman</b> (Mainz, Germany) |
| 11:00 am   | S1703 | tba<br><b>Francesca Odoardi</b> (Göttingen, Germany)                                                                                                      |
| 11:30 am   | S1704 | The microglia – tissue-resident T cell interplay drives compartmentalized and chronic autoimmune damage <b>Roland LIBLAU</b> (TOULOUSE, France)           |





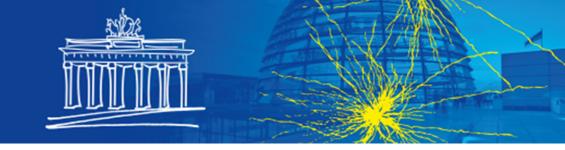
## S18 | Understanding the role of oligodendrocytes in neurodegenerative disorders: human and animal studies

| Chairs:        | Mahr  | noud Pouladi (Vancouver, Canada); Anna Williams (Edinburgh, UK)                                                                                                                   |  |  |
|----------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Presentations: |       |                                                                                                                                                                                   |  |  |
| 10:00 am       | S1801 | Using transcriptome and epigenome profiling to better understand the role of oligodendrocytes in neurodegenerative disorders <b>Julia Schulze-Hentrich</b> (Saarbrücken, Germany) |  |  |
| 10:30 am       | S1802 | Deciphering the glial functions of TDP-43<br>Shuo-Chien Ling (Singapore, Singapore)                                                                                               |  |  |
| 11:00 am       | S1803 | Myelination and oligodendrocyte abnormalities in models of Huntington disease<br>Mahmoud A. Pouladi (Vancouver, Canada)                                                           |  |  |
| 11:30 am       | S1804 | How do oligodendrocytes change in multiple sclerosis and Huntington's disease and how can we manipulate this for benefit?<br>Anna Williams (Edinburgh, UK)                        |  |  |





## S19 | Bioengineering meets glia: biomaterials applications to study glia and glial-associated disorders (Special Trainee


### Symposium)

Chairs

| onano.     |                |                                                                                                                                                                            |  |  |
|------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Presentati | Presentations: |                                                                                                                                                                            |  |  |
| 10:00 am   | S1901          | Oligodendrocytes' "feelings":a tissue engineered model to study the mechanobiology of myelination <b>Eva D. Carvalho</b> (Porto, Portugal)                                 |  |  |
| 10:20 am   | S1902          | Nanostructured materials and Nano-probes to modulate the functional activity of astrocytes. <b>Emanuela Saracino</b> (Bologna, Italy)                                      |  |  |
| 10:40 am   | S1903          | Nanomedicines for the induction of OPC differentiation and remyelination<br>Ariane Mwema (Bruxelles, Belgium)                                                              |  |  |
| 11:00 am   | S1904          | A biofabrication technology for complex 3D <i>in vitro</i> neural co-cultures containing microchannels in hydrogels <b>Adrián Seijas-Gamardo</b> (Maastricht, Netherlands) |  |  |
| 11:20 am   | S1905          | A soft cryogel scaffold for creating focal regions of demyelination on brain slice cultures<br>Lida Zoupi (Edinburgh, UK)                                                  |  |  |
| 11:40 am   | S1906          | Hyaluronic acid-based devices for transcranial drug delivery to tackle neurodegenerative diseases<br>Mansoor Al-waeel (Galway, Ireland)                                    |  |  |
|            |                |                                                                                                                                                                            |  |  |

**Eva Carvalho** (Porto Portugal): **Emanuela Saracino** (Bologna, Italy)





### S20 | Wrapping memories with myelin

Chairs: Mohit Dubey (Amsterdam, Netherlands)

#### **Presentations:**

10:00 am S2001 Chemogenetic activation of hippocampal CAMKiiα-expressing neurons accelerates remyelination and improves cognition in lysolecithin-induced demyelination. **Olamide Adebiyi** (London, Canada)

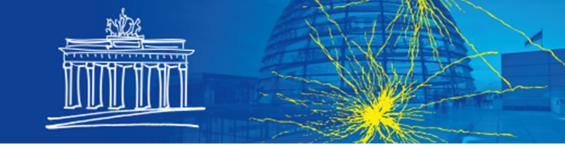
10:30 am S2002 Myelin dysfunction drives amyloid deposition in mouse models of Alzheimer's disease **Constanze Depp** (Göttingen, Germany)

- 11:00 am S2003 Myelin consolidates memories by conserving theta-gamma oscillations. **Mohit Dubey** (Amsterdam, Netherlands)
- 11:30 am S2004 The role of myelin in the etiology of tau pathology in Alzheimer's disease. **Michael Ewers** (Munich, Germany)





Monday, 10 July, 2023, 12:15 p.m. - 1:15 p.m.


### W02 | Student Lecture: Successful Scientific Publishing

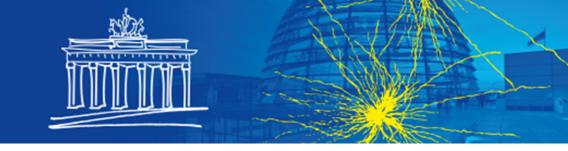
Chairs:

#### **Presentations:**

12:15 pm W0201 Successful scientific publishing Bruce R. Ransom (Hong Kong, China)






### **PS3 | Poster Session III**

Chairs:

#### **Presentations:**

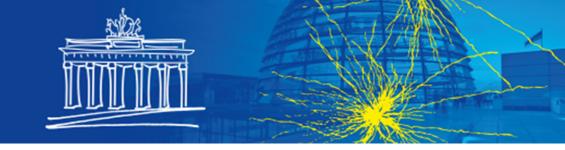
| 1:00 pm | T02-021C | Myeloid progenitor cells can efficiently repopulate the CNS as microglia-like cells<br>Konstantina Kolotourou (Göttingen, Germany)                                           |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:01 pm | T02-022C | Mapping Cortical Astrocyte Emergence and Distribution from V-SVZ Neural Stem Cells<br>Daniela A. Lozano Casasbuenas (Toronto, Canada)                                        |
| 1:02 pm | T02-023C | Single cell sequencing and functional analysis of early differentiated glia in human and mouse.<br>Paul Frazel (New York, USA)                                               |
| 1:03 pm | T02-024C | Role in neural stem cell differentiation of CHD8 and CHD7, chromatin remodelers, implicated in Autism Spectrum Disorder<br>Morgane Pigache (Paris, France)                   |
| 1:04 pm | T02-025C | The epigenetic regulation of Schwann Cells differentiation through DNA methylation, histone deacetylation and oxidative stress-response <b>Tasnim Mohamed</b> (Milan, Italy) |
| 1:05 pm | T02-026C | Oligodendrocytes aberrantly re-enter the cell cycle and die following neurotrauma<br>Chidozie Anyaegbu (Nedlands, Australia)                                                 |
| 1:06 pm | T02-027C | Impaired proliferation of oligodendrocyte precursor cells in aged mice following traumatic brain injury<br>Georgios Michalettos (Lund, Sweden)                               |
| 1:07 pm | T02-028C | A mechanistic view of TGF-β-mediated microglia cell fate in the zebrafish embryo <b>Valerie Wittamer</b> (Brussels, Belgium)                                                 |





| 1:08 pm | T02-029C | The effect of siponimod on oligodendrocyte precursor cell proliferation and maturation in naïve mice<br>Julie Damgaard Jakobsen (Odense C, Denmark)                                             |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:09 pm | T02-030C | Determining the role of RXRg in oligodendrogenesis using reporter system<br>Quentin Brassart (ILLKIRCH, France)                                                                                 |
| 1:10 pm | T05-060C | Characterization of microglial population expansion and activation state in the cerebral cortex of a TgF344-AD rat model <b>Julie S. Hansen</b> (Odense, Denmark)                               |
| 1:11 pm | T05-061C | PROTECTIVE EFFECTS OF ARONIA MELANOCARPA EXTRACT ON THE ASTROCYTES IN THE IN VITRO MODEL OF PARKINSON'S DISEASE<br>Nika Gržeta (Rijeka, Croatia)                                                |
| 1:12 pm | T05-062C | APOE genotype influences astrocyte-mediated spreading of pathogenic tau aggregates<br>Tobias Mothes (Uppsala, Sweden)                                                                           |
| 1:13 pm | T05-063C | Reactive astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms in amyotrophic lateral sclerosis (ALS)<br>Katarina Stoklund Dittlau (Leuven, Belgium) |
| 1:14 pm | T05-064C | Mouse strain-specific microglial phenotype in aging<br><b>Marie J. Pietrowski</b> (Bonn, Germany)                                                                                               |
| 1:15 pm | T05-065C | GABA <sub>в</sub> receptor activation modulates oligodendrocyte progenitor cell activity and ameliorates experimental multiple sclerosis<br>Laura Bayón-Cordero (Leioa, Spain)                  |
| 1:16 pm | T05-066C | Modeling Alexander's Disease using stem cells, genome editing and forward programming<br>Oskar G. Zetterdahl (Lund, Sweden)                                                                     |
| 1:17 pm | T05-067C | Pulse-modulated 1800 MHz electromagnetic fields affect gene expression in lipopolysaccharide-activated microglia<br>Michel Mallat (Paris, France)                                               |
| 1:18 pm | T05-068C | Hippocampal neuroimmune reactivity in adult and aged male rats following binge-like alcohol exposure<br><b>Erika R. Carlson</b> (Austin, USA)                                                   |




| 1:19 pm | T05-069C | Increased surface expression of P2X4 receptors in microglia/macrophages ameliorates experimental multiple sclerosis in females<br>Paloma Mata (Leioa, Bizkaia, Spain)                                                                                                                           |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:20 pm | T05-070C | Astrocytes generated from iPSC of Megalencephalic leukoencephalopathy with subcortical cysts (MLC) donors show phenotype associated with disease and reveal novel dysfunctional molecular pathways and possible druggable targets for therapeutic purposes <b>Elena Ambrosini</b> (Rome, Italy) |
| 1:21 pm | T05-071C | Combinatorial effect of genetic factors predicts microglia dysfunction in Alzheimer's Disease<br>Gonzalo Leguia Fauro (Antwerp, Belgium)                                                                                                                                                        |
| 1:22 pm | T05-072C | Air pollution and neurodegeneration: an <i>in vitro</i> study of the role of astrocytes in magnetite nanoparticles-induced neurotoxicity<br>Ludovica Carpinelli (Rome, Italy)                                                                                                                   |
| 1:23 pm | T05-073C | Comprehensive characterization of APP <sup>NL-F</sup> mice a promising model to study Alzheimer's disease early stages<br>Helene Hirbec (Montpellier, France)                                                                                                                                   |
| 1:24 pm | T05-074C | The impact of pharmacological depletion of microglia on ethanol-induced corticolimbic neurodegeneration in male rats<br>Jennifer K. Melbourne (Austin, USA)                                                                                                                                     |
| 1:25 pm | T05-075C | Co-labeling Strategy for Analyzing Astrocyte Morphology in a Rat Model of Alcohol Use Disorder<br>Steven P. Guerin (Austin, USA)                                                                                                                                                                |
| 1:26 pm | T05-076C | Glucocorticoid receptors in astrocytes regulate alpha-synuclein pathological actions impacting motor an non-moto symptomology of Parkinson's disease.<br>Agnès Chaperon (Paris, France)                                                                                                         |
| 1:27 pm | T05-077C | Pyruvate dehydrogenase kinase 2 knockdown restores the ability of ALS-linked SOD1G93A rat astrocytes to support motor neuron survival<br>Ernesto Miquel (Montevideo, Uruguay)                                                                                                                   |
| 1:28 pm | T05-078C | Gas6 protein is secreted by brain glial cells and is present at different levels across different neurodegenerative diseases.<br>Nadide Aydin (Portsmouth/Southsea, UK)                                                                                                                         |





| 1:29 pm | T05-079C | A Novel preclinical human <i>Ex-vivo</i> Cerebellum Model: For a Bench to Bedside Research<br><b>Junyi Zhang</b> (Freiburg im Breisgau, Germany)                                  |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:30 pm | T05-080C | Higher throughput glial assays to screen compounds in neurodegeneration drug discovery<br><b>Rebeka Popovic</b> (London, UK)                                                      |
| 1:31 pm | T05-081C | Loss of TDP-43 in microglia leads to abnormal brain development<br>Anne-Claire Compagnion (Lausanne, Switzerland)                                                                 |
| 1:32 pm | T05-082C | Examination of the relevance of noradrenergic transmission in astrocytes in in vitro and in vivo models of presymptomatic Parkinson's disease.<br>Justyna Barut (Kraków, Poland)  |
| 1:33 pm | T05-083C | The neuroprotective effects of stimulating astroglia in a rat model of neurodegeneration<br>Jessica L. McNeill (Ottawa, Canada)                                                   |
| 1:34 pm | T05-084C | How Does Aging Affect Microglia and OPCs?<br><b>Ebb M. Vang</b> (Reykjavík, Iceland)                                                                                              |
| 1:35 pm | T05-085C | TREM2 impacts brain microglia, oligodendrocytes and endothelial co-expression modules revealing genes and pathways important in Alzheimer's disease<br>Angela Hodges (London, UK) |
| 1:36 pm | T05-086C | Contribution of K <sub>ir4.1</sub> dysfunction in spinal astrocytes to the pathogenesis of late-onset SMA<br><b>Christina David</b> (Essen, Germany)                              |
| 1:37 pm | T05-087C | Role of CERT1 in control of microglia biology in mice – relevance for cognitive functions<br>Yash Parekh (ILLKIRCH, France)                                                       |
| 1:38 pm | T05-088C | Neuronal Tau Pathology Alters Human Microglial Morphology, Transcriptome, and Function<br>Zahara Keulen (Irvine, USA)                                                             |
| 1:39 pm | T06-024C | Multi-omics analyses reveal impaired lipid metabolism and oxidative stress in a zebrafish model of Alexander disease <b>Deianira Bellitto</b> (Genoa, Italy)                      |





| 1:40 pm | T06-025C | Impaired neuronal and glial calcium signaling and glucose metabolism in aged <i>Drosophila</i> brain<br><b>Urška ?erne</b> (Ljubljana, Slovenia)                                                                         |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:41 pm | T06-026C | Translocator protein 18kDa (TSPO) regulation of astrocyte metabolic flexibility<br>Wyn Firth (Exeter, UK)                                                                                                                |
| 1:42 pm | T06-027C | Stress stimuli trigger lipid droplet accumulation in astrocytes<br>Anemari Horvat (Ljubljana, Slovenia)                                                                                                                  |
| 1:43 pm | T06-028C | The influence of cold exposure on glial physiology in <i>Drosophila</i><br><b>Nina Surina</b> (Dresden, Germany)                                                                                                         |
| 1:44 pm | T06-029C | Microglia Regulation of Neuronal Metabolism and mRNA Translation<br>Drew Adler (New York, USA)                                                                                                                           |
| 1:45 pm | T06-030C | Metabolic differences in mouse and human microglia during inflammation<br>Alejandro Marmolejo (Groningen, Netherlands)                                                                                                   |
| 1:46 pm | T06-031C | Pathophysiological consequences of microcephaly-associated mutations in the asparagine synthetase (ASNS) gene<br>Anja Reinert (Leipzig, Germany)                                                                         |
| 1:47 pm | T06-032C | Structural remodeling of microglial mitochondria across brain regions and developmental stages<br>Katherine Espinoza (Los Angeles, USA)                                                                                  |
| 1:48 pm | T06-033C | Region-specific and sex-independent glutamate regulation of mitochondrial fatty acid catabolism in astrocytes demonstrated by different experimental approaches<br>Francina Bagur Llufriu (Cerdanyola del Vallès, Spain) |
| 1:49 pm | T06-034C | Hypothalamic glial cells and metabolic alterations in the mouse model of Alzheimer's disease 5xFAD<br><b>José Joaquín Ochoa Navarro</b> (Alcorcón, Spain)                                                                |
| 1:50 pm | T07-007C | Studying CEPsh glia in <i>C. elegans</i> uncovers factors of early development and lifelong maintenance of astroglia architecture<br>Francesca Caroti (Heidelberg, Germany)                                              |



| 1:51 pm | T07-008C | Brevikine generated by extracellular proteolysis of astrocyte-released brevican activates ERK1/2 signaling and induces neurite outgrowth in hippocampal neurons<br>Marina Guizzetti (Portland, USA) |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:52 pm | T07-009C | Matrix Metalloproteinase 1 and NinjurinA Govern Glial Responses to Neurodegeneration<br>Cole Brashaw (Portland, USA)                                                                                |
| 1:53 pm | T07-010C | Rescue of cognitive and synaptic functions in aged mice by microglial modulation through inhibition of the colony stimulating factor-1 receptor<br>Luisa Strackeljan (Magdeburg, Germany)           |
| 1:54 pm | T07-011C | Adhesion GPCR dissociation in glia controls neural progenitor cell number<br><b>Nicole Scholz</b> (Leipzig, Germany)                                                                                |
| 1:55 pm | T07-012C | Untangling remyelination failure in multiple sclerosis: absence of matrix metalloproteinase 7 does not lead to fibronectin aggregate formation<br>Rianne P. Gorter (Groningen, Netherlands)         |
| 1:56 pm | T08-019C | IFNγ mediated repression of enteric glial cell <i>Sox10</i> drives gut inflammation<br>Jay V. Patankar (Erlangen, Germany)                                                                          |
| 1:57 pm | T08-020C | Reduced ABCA1 expression and disrupted cholesterol homeostasis in human and mouse astrocytes modeling fragile X syndrome<br>Karo Talvio (Helsinki, Finland)                                         |
| 1:58 pm | T08-021C | Exploring transcriptional cascades in cortical astrocytes: the role of Sox9 and Trps1<br>Poornemaa Natarajan (Munich, Germany)                                                                      |
| 1:59 pm | T08-022C | A CRISPRi/a screen to identify regulators of human oligodendrocyte precursor cell specification<br>Neemat Mahmud (Stockholm, Sweden)                                                                |
| 2:00 pm | T08-023C | Gene expression profiling of remyelinating lesions in MS donors with different remyelinating capacity<br>Alida Chen (Amsterdam, Netherlands)                                                        |
| 2:01 pm | T08-024C | Ribosomal tagging (Ribotag) in Astrocytes: Methodological approach for extracting mRNA from small brain tissue samples in short period of time<br>Despoina Binou (Jena, Germany)                    |

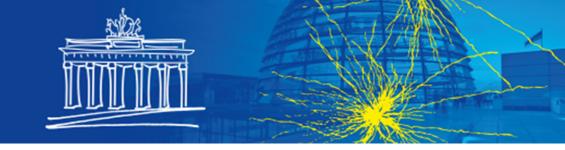


| 2:02 pm | T08-025C | Cut homeodomain transcription factor regulates cortical glial cell morphogenesis in Drosophila ventral nerve cord <b>VAISHALI YADAV</b> (VARANASI, India)                                  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:03 pm | T08-026C | Heterogeneous contribution of pericytes and perivascular fibroblasts to fibrotic scar tissue after CNS injury <b>Daniel Holl</b> (Solna, Sweden)                                           |
| 2:04 pm | T08-027C | Perinatal estrogen differentially masculinizes expression of astroglial markers in the developing neocortex<br>Gareth M. Rurak (Ottawa, Canada)                                            |
| 2:05 pm | T08-028C | The role of the intellectual disability gene and histone demethylase Phf8 in oligodendroglia<br>Marco Kremp (Erlangen, Germany)                                                            |
| 2:06 pm | T10-031C | Astrocyte heterogeneity in the ageing cortex<br>Maroussia Hennes (Planegg-Martinsried, Germany)                                                                                            |
| 2:07 pm | T10-032C | Early exposure to Inflammation imbalance immune and developmental populations of microglia<br>Juliette Van Steenwinckel (Paris, France)                                                    |
| 2:08 pm | T10-033C | Origin and diversity of cortical astrocytes<br>Jiafeng Zhou (Geneva, Switzerland)                                                                                                          |
| 2:09 pm | T10-034C | Uncovering two faces of reactivity: Microenvironment dependent subtypes of astrocytes contribute to the pathogenesis in a MSA mouse model <b>Yanni Schneider</b> (Erlangen, Germany)       |
| 2:10 pm | T10-035C | Hallmarks of white matter astrocytes reveal region-specificity and adult astrogenesis<br>Judith Fischer-Sternjak (Planegg-Martinsried, Germany)                                            |
| 2:11 pm | T10-036C | An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult spinal cord that is transiently reversed upon injury <b>Aida Rodrigo Albors</b> (Edinburgh, UK) |
| 2:12 pm | T10-037C | Astrocyte diversity by region-specific proteomic labeling <i>in vivo</i><br>Rainer Pielot (Magdeburg, Germany)                                                                             |



| 2:13 pm | T10-038C | Integrating single-cell and spatially resolved transcriptomic strategies to survey astrocytes in response to stroke <b>Emerson Daniele</b> (Toronto, Canada)       |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:14 pm | T10-039C | Enteric gliosis entailed by pathological alpha-synuclein in the duodenum of Parkinson's disease patients<br>Michele Sandre (Padova, Italy)                         |
| 2:15 pm | T10-040C | Spatial cellular dynamics of lesion development and progression in a mouse model of multiple sclerosis <b>Petra Kukanja</b> (Solna, Sweden)                        |
| 2:16 pm | T10-041C | Spatial-transcriptomics of postnatal microglia <b>Susanne Wiemann</b> (Bielefeld, Germany)                                                                         |
| 2:17 pm | T10-042C | The molecular identity of <i>glia limitans superficialis</i> astrocytes<br>Philip Hasel (New York, USA)                                                            |
| 2:18 pm | T10-043C | Proteomic characterization of interferon-responsive reactive astrocytes in the mouse and human brain<br><b>Priya Prakash</b> (New York, USA)                       |
| 2:19 pm | T10-044C | Structural analysis of astrocytes in different experimental conditions<br>Sara Barsanti (Braga, Portugal)                                                          |
| 2:20 pm | T10-045C | Astrocyte structural heterogeneity in the mouse hippocampus<br>João Luís Machado (Braga, Portugal)                                                                 |
| 2:21 pm | T10-046C | Characterising the immune potential of enteric glia cells<br>Sofia Archontidi (London, UK)                                                                         |
| 2:22 pm | T10-047C | ARG1 expression in basal forebrain microglia modulates hippocampal innervation and cognition during postnatal development <b>Jose Luis Venero</b> (Seville, Spain) |
| 2:23 pm | T10-048C | Exploring the Impact of 5-HTR Signaling on Astrocyte Calcium Dynamics and Morphology<br>Franziska E. Müller (Hannover, Germany)                                    |




| 2:24 pm | T10-049C | Effects of gender and age on glial cells and axon myelination within the primate spinal cord <b>Florence E. Perrin</b> (Montpellier, France)                    |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:25 pm | T10-050C | Blood brain barrier disruption after traumatic brain injury induces an atypical response in astrocytes and neurons<br>Carmen Muñoz-Ballester (Birmingham, USA)  |
| 2:26 pm | T10-051C | Enteric Glia Display Regional and Phenotype-specific MicroRNA Signatures<br>Amy M. Holland (Maastricht, Netherlands)                                            |
| 2:27 pm | T10-052C | Age-related changes in parenchymal astrocytes within different areas of the human cerebral cortex<br>Patrizia Della Vecchia (Planegg-Martinsried, Germany)      |
| 2:28 pm | T10-053C | From indicator to biosensor: GCaMPs for deciphering astrocyte Ca <sup>2+</sup> complexity <b>Andre Zeug</b> (Hannover, Germany)                                 |
| 2:29 pm | T10-054C | Immaturity of microglia leads to alterations in CNS development<br>Tamara H. Ruß (Bielefeld, Germany)                                                           |
| 2:30 pm | T10-055C | Morphological Heterogeneity of Astrocytes in a Cerebral Organoid<br>Kaitlin Szederkenyi (Toronto, Canada)                                                       |
| 2:31 pm | T11-083C | Investigating the neuron and astrocyte-specific contribution to disease and network dysfunction in a human iPSC model of MPSIIIC James A. Crowe (Lund, Sweden)  |
| 2:32 pm | T11-084C | Impact of adaptative inflammatory cues on microglia-neuron interaction at the Node of Ranvier in Multiple Sclerosis and EAE<br>Anne Desmazieres (PARIS, France) |
| 2:33 pm | T11-085C | Dysfunctional astrocyte calcium signaling and neuron-astrocyte interplay in experimental multiple sclerosis<br>Andres Mateo Baraibar (Barakaldo, Spain)         |
| 2:34 pm | T11-086C | Dysregulated gliomedin alters C-fiber excitability<br>Yael Eshed Eisenbach (Rehovot, Israel)                                                                    |





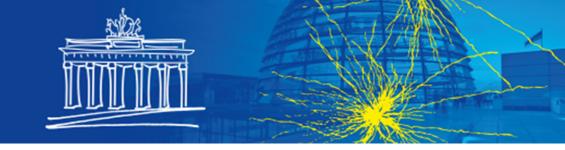
| 2:35 pm | T11-087C | Characterizing the spatial distribution of spinal cord microglia after Spared nerve injury model of neuropathic pain<br>Andreea-Violeta Grosu (Bucharest, Romania)                |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:36 pm | T11-088C | Microglial Rac1 is essential for microglia-synapse crosstalk and cognitive performance<br>Tiago O. Almeida (Porto, Portugal)                                                      |
| 2:37 pm | T11-089C | Deciphering ATP signaling in Epilepsy with Biosensors<br><b>Paola Nobili</b> (Montpellier, France)                                                                                |
| 2:38 pm | T11-090C | Novel Regulatory Mechanisms in Peripheral Nerve Development and Disease<br><b>Stephen Bradley</b> (Edinburgh, UK)                                                                 |
| 2:39 pm | T11-091C | Interferon-γ: opponent or teammate of oxaliplatin-induced neurotoxicity in rat organotypic spinal cord slices? <b>Valentina Ferrara</b> (Florence, Italy)                         |
| 2:40 pm | T11-092C | Activated macrophages after SNI increase DRG neuronal excitability<br>Alexandru-Florian Deftu (Lausanne, Switzerland)                                                             |
| 2:41 pm | T11-093C | The involvement of astrocyte calcium-dependent signaling in fear memory <b>Daniela Sofia Abreu</b> (Braga, Portugal)                                                              |
| 2:42 pm | T11-104C | Epileptiform activity synchronizes microglial calcium signaling through P2Y12 receptors<br>Elena Avignone (BORDEAUX CEDEX, France)                                                |
| 2:43 pm | T11-095C | Dissecting the role of p75 pan-neurotrophin receptor in the hyperglycemia-driven neuroinflammation and neurodegeneration. <b>Konstantina Chanoumidou</b> (HERAKLIO CRETE, Greece) |
| 2:44 pm | T11-096C | Glial neuronal interactions in a synaptic connectomic dataset of zebrafinch<br>Christina Schick (Planegg, Martinsried, Germany)                                                   |
| 2:45 pm | T11-097C | In vitro modelling of intraneuronal tau aggregation in a hiPSC-derived co-culture system of neurons, astrocytes and microglia <b>Julian Röwe</b> (Ludwigshafen, Germany)          |





| 2:46 pm | T11-098C | The effect of acute and chronic insufficient sleep on mouse microglia<br><b>Sarah Steffens</b> (Helsinki, Finland)                                              |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:47 pm | T11-099C | Astrocytic control of thalamic sensory processing<br><b>Eunji Cheong</b> (Seoul, South Korea)                                                                   |
| 2:48 pm | T11-100C | Discovering RNA sequence motifs necessary and sufficient for mRNA localization in astrocytes using a novel SN-MPRA approach Joseph Dougherty (SAINT LOUIS, USA) |
| 2:49 pm | T11-101C | GAT transporters control GABA release by Schwann cells in peripheral nerve fibers<br>Valerio Magnaghi (Milan, Italy)                                            |
| 2:50 pm | T11-102C | Neuron-derived Thioredoxin-80: a novel regulator of type-I interferon response in microglia<br>Julen Goicolea (Solna, Sweden)                                   |
| 2:51 pm | T11-103C | Profiling of glial cell-surface molecules that mediate engulfment of neurons<br>Leire Abalde Atristain (Portland, USA)                                          |
| 2:52 pm | T11-094C | Astrocytic Foxo1 regulates hippocampal spinogenesis and synaptic plasticity and enhances fear memory<br>João Filipe Viana (Braga, Portugal)                     |
| 2:53 pm | T11-105C | Modulation of the synaptic translatome by glial extracellular vesicles in 5xfad mice<br>Aida de la Cruz (Leioa, Spain)                                          |
| 2:54 pm | T11-106C | Dopaminergic drugs induce changes in transporters' mRNA expression in adult and neonatal rat astrocytes<br>Vesna So?an (Ljubljana, Slovenia)                    |
| 2:55 pm | T11-107C | Different effects of ageing on astrocytes and neurons in the human brain<br>Aleksandr Popov (Jiaxing, China)                                                    |
| 2:56 pm | T11-108C | Potassium signaling and its role in regulating axon-oligodendrocyte metabolic interactions<br><b>Zoe J. Looser</b> (Zurich, Switzerland)                        |






| 2:57 pm | T11-109C | Disrupted iron homeostasis in mice engineered with a mutation associated with stuttering<br>Marissa Millwater (Bethesda, USA)                                                         |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:58 pm | T11-110C | Breaking the code of myelination: The Drosopus chimera, an evolutional perspective from invertebrates to vertebrates.<br>Noémie Frère (Paris, France)                                 |
| 2:59 pm | T11-111C | Enrichment of neurogenetic epilepsy genes within the astroglial lineage suggests potential new role for glial ion channels in cortical progenitors<br>Laura R. Morcom (Cambridge, UK) |
| 3:00 pm | T11-112C | Crosstalk between Glia Cells and Neurons under the Influence of Paclitaxel: Novel insights into the `Chemobrain´<br>Sabine U. Vay (Koeln, Germany)                                    |
| 3:02 pm | T11-114C | Microglial signatures in an <i>in vivo</i> familial Parkinson's disease mouse model<br><b>Elpinickie Ninou</b> (Athens, Greece)                                                       |
| 3:03 pm | T11-115C | Norepinephrine regulates Ca <sup>2+</sup> signals and the fate of oligodendrocyte progenitor cells in the cortex <b>Frederic Fiore</b> (Heidelberg, Germany)                          |
| 3:04 pm | T11-116C | Gamma-frequency oscillations influence the morphology and activation of microglia<br>Meg Elley (Exeter, UK)                                                                           |
| 3:05 pm | T11-117C | Oligodendroglial NMDA receptors: roles in activity-dependent myelination and remyelination<br>Alice Staffa (Sant Joan d'Alacant, Spain)                                               |
| 3:06 pm | T11-118C | Exploring feedback mechanisms employed by oligodendrocyte precursor cells to regulate neuronal circuit development in the zebrafish visual system.<br>Denis Yuan (Edinburgh, UK)      |
| 3:07 pm | T11-119C | Radial glial action potentials initiate fetal motor activity<br>Agathe Lafont (Paris, France)                                                                                         |
| 3:08 pm | T11-120C | Distinct handling of intracellular L-lactate in locus coeruleus neurons and cortical astrocytes<br><b>Zala Smole</b> (Ljubljana, Slovenia)                                            |



| T11-121C | Mechanisms of microglial mediated elimination of newborn embryonic retinal ganglion cells<br>Navita N. Lopez (Salt Lake City, USA)                                                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T11-122C | Astrocytic Nrxn1 Tunes Astrocytic Functions in an Input-Specific Manner<br>Justin H. Trotter (Stanford, USA)                                                                                                   |
| T11-123C | The myelinic channel system: A highway to the glial-axonal junction and infrastructure for myelin remodelling<br>Katie J. Chapple (Glasgow, UK)                                                                |
| T12-021C | Renewal of microglia alters their epigenetic status and increases their biological age in physiological conditions and after stroke<br>Mattia Gallizioli (Barcelona, Spain)                                    |
| T12-022C | Brain angiogenesis induced by non-viral gene therapy leads brain damage recovery following experimental ischemic stroke<br><b>Leire Iglesias Iglesias</b> (Leioa, Spain)                                       |
| T12-023C | Fight for survival or get destroyed? – Autophagy in glial cells after hypoxic-ischemic injury<br><b>Paulina G?bala</b> (Warsaw, Poland)                                                                        |
| T12-024C | A robust gene set module highlights major transcriptomic changes induced by stroke in brain endothelial cells: effect of aging on the neuroinflammatory response<br>Maria Arbaizar Rovirosa (Barcelona, Spain) |
| T12-025C | Dectin-1 <sup>+</sup> microglia participate in clearance of apoptotic neuronal cells<br><b>Jordi Pedragosa</b> (Barcelona, Spain)                                                                              |
| T12-026C | A 3D system for modelling astrocytic response in brain pathology – the paradigm of ischemic stroke<br><b>Georgia Athanasopoulou</b> (Porto, Portugal)                                                          |
| T12-027C | Interglial communication of astrocytes and microglia in an in vitro model of ischemia<br>Daniel Navin Olschewski (Cologne, Germany)                                                                            |
| T12-028C | Ischemic stroke induces a chronically altered microglia phenotype with pro-regenerative capacities<br>Steffanie Heindl (München, Germany)                                                                      |
|          | T11-122C<br>T11-123C<br>T12-021C<br>T12-022C<br>T12-023C<br>T12-023C<br>T12-024C<br>T12-025C<br>T12-026C<br>T12-027C                                                                                           |





| 3:20 pm | T12-029C | MicroRNA Regulation of Ischemic White Matter Injury<br><b>Selva Baltan</b> (Portland, USA)                                                                                                  |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:21 pm | T12-030C | A Human Brain Organoid Model for Cerebral Ischemia<br><b>Siri Egenæs</b> (Oslo, Norway)                                                                                                     |
| 3:22 pm | T12-031C | Intermittent hypoxia promotes gliogenesis and effective migration of Neuronal stemcells into the stroke infarct through modulation of glial scar<br>Syed A. Roshan (Tiruchirapalli, India)  |
| 3:23 pm | T12-032C | Hypoxia activates a unique reactive transformation signature in hiPSC-derived astrocytes<br>Hannah D. Franklin (London, UK)                                                                 |
| 3:24 pm | T13-001C | Voluntary Wheel Running in Old C57BL/6 Mice Reduces Age-Related Inflammation in the Colon but Not in the Brain<br>Christiane Frahm (Jena, Germany)                                          |
| 3:25 pm | T13-002C | Investigating the role of dorsal CA1 astrocytes activation during contextual memory formation and recall.<br>Toko Kikuchi (Geneva, Switzerland)                                             |
| 3:26 pm | T13-003C | Astrocytes provide the temporal dynamic required for theta driven memory formation in the hippocampus<br>Silas Dalum Larsen (Copenhagen, Denmark)                                           |
| 3:27 pm | T13-004C | Daphnetin improves cognitive function in an APP/PS1 double-transgenic mouse model of Alzheimer's disease by inhibiting Aβ deposition and astrocytic activation<br>Peipei Gao (Xi'an, China) |
| 3:28 pm | T13-005C | Learning-induced changes in secretome of hippocampal astrocytes<br><b>Hyeyeon Kim</b> (Daegu, South Korea)                                                                                  |
| 3:29 pm | T13-006C | The role of astrocytic Gs-GPCR signaling in cortical engram formation and remote memory retrieval<br>Aline Mak (AMSTERDAM, Netherlands)                                                     |
| 3:30 pm | T13-007C | Oligodendrocyte lineage dynamics dictate cognitive performance outcomes of pre-test working memory training.<br>Stuart G. Nayar (London, UK)                                                |



| 3:31 pm | T13-008C | Astrocyte dynamics determine the long-term fate of memories<br><b>Hiroki Yamao</b> (Miyagi prefecture, Sendai, Japan)                                                         |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:32 pm | T13-009C | Analyzing learning-evoked myelination<br><b>Tanja M. Birgisdóttir</b> (Reykjavík, Iceland)                                                                                    |
| 3:33 pm | T13-010C | Astrocytic synchronization promotes memory consolidation<br>Márton Péter (Budapest, Hungary)                                                                                  |
| 3:34 pm | T14-052C | Evaluation of safety and efficacy of novel drugs in de- and remyelination conditions using immunocompetent brain organoids <b>Simona Lange</b> (Basel, Switzerland)           |
| 3:35 pm | T14-053C | Tiling of myelin patterns: the dynamics of developmental myelination in the optic nerve.<br>Alexandra Beaudry-Richard (San Francisco, USA)                                    |
| 3:36 pm | T14-054C | Myelin deposition follows striking distinct patterns in human and mouse cerebella<br>Annalisa Buffo (Orbassano, TORINO, Italy)                                                |
| 3:37 pm | T14-055C | Ablation of oligodendrogenesis in adult mice alters brain microstructure and activity independently of behavioural deficits<br>Malte Kaller (Oxford, UK)                      |
| 3:38 pm | T14-056C | Comparative morphology of mitochondria in optic nerve and cell body of retinal ganglion cells in the <i>Plp</i> -deficient mouse <b>Leonie C. Schadt</b> (Göttingen, Germany) |
| 3:39 pm | T14-057C | Role of monocarboxylate transporter (MCT) 2 in the central nervous system (re)myelination<br>Leire Izagirre Urizar (Leioa, Spain)                                             |
| 3:40 pm | T14-058C | The role of the actin cytoskeleton in axon ensheathment and myelination<br><b>Yi Jiang</b> (London, UK)                                                                       |
| 3:41 pm | T14-059C | AMPA receptor signalling to oligodendrocyte precursors stimulates motor skill learning<br>Matthew Swire (London, UK)                                                          |



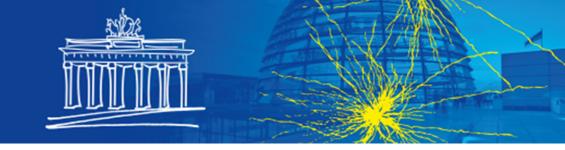


| 3:42 pm | T14-060C | Control of myelinated axon conduction speed by node of Ranvier electrical and structural adaptations<br><b>Jonathan Lezmy</b> (London, UK)                                                                                |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:43 pm | T14-061C | Type-dependent dysregulation of myelination in focal cortical dysplasia in the frontal lobe of the human neocortex<br><b>Catharina Donkels</b> (Freiburg im Breisgau, Germany)                                            |
| 3:44 pm | T14-062C | Role of corepressors Ncor1 and Ncor2 in Schwann cell biology.<br>Nikiben Patel (San Juan, Spain)                                                                                                                          |
| 3:45 pm | T14-063C | Ceruloplasmin deficient mice show signs of reduced microglial activation state in response to cuprizone treatment<br>Birgitte Villadsen (Odense C, Denmark)                                                               |
| 3:46 pm | T14-064C | Hippocampal PV <sup>+</sup> BC axon myelination shortens inhibitory delays and speeds up sharp-wave ripple frequency<br><b>David Vandael</b> (Amsterdam, Netherlands)                                                     |
| 3:47 pm | T14-065C | Development of a Boronic Acid-based fluorescent platform for the live imaging of myelin-carrying cells as a tool to study and characterize Multiple Sclerosis-like foamy microglia.<br>Maria Vaz Pinto (Lisbon, Portugal) |
| 3:48 pm | T14-066C | Amyloid β oligomers impair node of Ranvier structure in Alzheimer's disease<br><b>Tania Quintela Lopez</b> (London, UK)                                                                                                   |
| 3:49 pm | T14-067C | Reactive microglia phagocytose synapses in response to focal demyelination<br>Michael Perry (Cambridge, UK)                                                                                                               |
| 3:50 pm | T14-068C | Tissue-type plasminogen activator contributes to developmental myelination.<br>Barbara Delaunay-Piednoir (CAEN, France)                                                                                                   |
| 3:51 pm | T14-069C | Modification of grey and white matter composition during postnatal mouse development measured by Fourier transformed infrared microspectroscopy<br>Gemma Manich (Cerdanyola del Vallès, Spain)                            |
| 3:52 pm | T14-070C | Siponimod ameliorates metabolic oligodendrocyte injury via the sphingosine-1 phosphate receptor 5<br>Leo Heinig (Rostock, Germany)                                                                                        |



| 3:53 pm | T14-071C | ROLE OF NEDDYLATION IN OLIGODENDROCYTE DIFFERENTIATION AND MYELINATION<br>Izaskun Buendia (A Coruña, Spain)                                                                 |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:54 pm | T14-072C | Spatiotemporal patterns of developmental myelination across early and higher-level visual cortex in the human.<br>Clara M. Bacmeister (Stanford, USA)                       |
| 3:55 pm | T14-073C | Myelin preserves sleep oscillations and memory function<br>Mohit Dubey (Amsterdam, Netherlands)                                                                             |
| 3:56 pm | T14-074C | A role of Schmidt-Lanterman Incisure number for sustaining Schwann cell function during chronic and acute nerve injury<br>Doris Krauter (Göttingen, Germany)                |
| 3:57 pm | T14-075C | Oligodendrocytes may utilize post-synaptic proteins to coordinate myelin formation on distinct axon classes<br>Natalie Carey (Aurora, USA)                                  |
| 3:58 pm | T14-076C | Studying the role of GPR37 in CNS myelination<br>Renana Hajbi Karasik (Rehovot, Israel)                                                                                     |
| 3:59 pm | T14-077C | Investigating the role of oligodendrocyte TRPA1 channel in demyelinating disease using the cuprizone model<br>Grace Flower (London, UK)                                     |
| 4:00 pm | T14-078C | The Monoselective Sphingosine-1-Phosphate Receptor-1 Modulator Ponesimod Enhances Remyelination in the Cuprizone Model of Demyelination<br>Emily Willems (Hasselt, Belgium) |
| 4:01 pm | T14-079C | Oligodendroglial UNC5B regulates the organization of paranodal junctions and myelin modification during aging <b>Nonthué A. Uccelli</b> (Montreal, Canada)                  |
| 4:02 pm | T14-080C | Myelin internalization by oligodendroglia promotes lineage progression and maturation<br>Carla Peiró Moreno (Leioa, Spain)                                                  |
| 4:03 pm | T14-081C | Oligodendroglial cells and myelin in SCN2A mutant mice<br>Julia Volkmer (Tübingen, Germany)                                                                                 |




| 4:04 pm | T14-082C | Exploring Fbxw7 regulation of Myrf in CNS myelination<br>Hannah Y. Collins (Portland, USA)                                                                                |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:05 pm | T14-083C | Repurposing of PARP-1 Inhibitors in Rare Demyelinating Diseases<br>Marianne Mekhaeil (Dublin, Ireland)                                                                    |
| 4:06 pm | T15-013C | Widespread and continuous astrocytes activation supports long-term neurogenesis in the lesioned striatum<br>Marco Fogli (Orbassano, Italy)                                |
| 4:07 pm | T15-014C | Identification of transiently formed spinal cord immune-endogenous neural stem cell niches upon injury<br>Martyna Lukoseviciute (Solna, Stockholm, Sweden)                |
| 4:08 pm | T15-015C | Dynamics and regulation of intraventricular oligodendrocyte progenitors in the adult brain<br>Ana Delgado (Basel, Switzerland)                                            |
| 4:09 pm | T15-016C | Aquaporin-4 aggregation into Orthogonal Arrays of Particles affects Neural Stem Cell behaviour in the early phases of neural differentiation<br>Guido Mogni (Bari, Italy) |
| 4:10 pm | T15-017C | Novel regulators of astrocyte-adult neural progenitor cells crosstalk<br>Mariagrazia Grilli (Novara, Italy)                                                               |
| 4:11 pm | T15-018C | A distinct population of neuroblasts in the aged SVZ acquires an inflammatory active expression profile and doesn't reach the OB Jonas Fritze (Lund, Sweden)              |
| 4:12 pm | T16-111C | Transcriptional and behavioural response of microglia-specific Smad4 knock-out mice to LPS<br>Phani Sankar Potru (Bielefeld, Germany)                                     |
| 4:13 pm | T16-112C | P2X7R, β <sub>3</sub> -integrin and Cx-43 mediate interaction between astrocytes and adjacent autoreactive immune cells <b>Katarina D. Milicevic</b> (Belgrade, Serbia)   |
| 4:14 pm | T16-113C | CD300f immune receptor-dependent phagocytosis and lipid degradation in demyelinating lesions of the nervous system<br>Andrés Cawen (Montevideo, Uruguay)                  |





| 4:15 pm | T16-114C | Human iPSC-derived microglia - a model for neuronopathic Gaucher Disease<br>Juliane F. Tampé (Lund, Sweden)                                                                          |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:16 pm | T16-115C | In vitro characterization of human neuroinflammatory astrocytes<br>Francesca Rapino (Cambridge, USA)                                                                                 |
| 4:17 pm | T16-116C | Evobrutinib, a Bruton's tyrosine kinase inhibitor, modulates microglia activity in vivo<br>Anastasia Geladaris (Göttingen, Germany)                                                  |
| 4:18 pm | T16-117C | In vitro modeling of multiple sclerosis utilizing human iPSC-derived microglia<br>Johanna Lotila (Tampere, Finland)                                                                  |
| 4:19 pm | T16-118C | The potential therapeutic role of itaconate and mesaconate on the detrimental effects of neuroinflammatory processes in the brain <b>Melanie Ohm</b> (Braunschweig, Germany)         |
| 4:20 pm | T16-119C | Reboxetine treatment reduces glial reactivity in the P301S mouse model<br>Irene Lopez Gutierrez (MADRID, Spain)                                                                      |
| 4:21 pm | T16-120C | Mechanistic single-cell investigation of neuroinflammation induced by influenza A virus infection<br>Lea Gabele (Braunschweig, Germany)                                              |
| 4:22 pm | T16-121C | The effect of selective soluble TNF-TNFR1 signaling inhibition on microglial phenotypes in chronic neuroinflammation post-stroke <b>Pernille Vinther Nielsen</b> (Odense C, Denmark) |
| 4:23 pm | T16-122C | Defining the consequence of LRRK2 dysregulation in human ESC-derived astrocytes<br><b>Áine Bríd Heffernan</b> (Edinburgh, UK)                                                        |
| 4:24 pm | T16-123C | IL-10 protects female mice from Methamphetamine-induced neuroinflammation<br>Ana Isabel Silva (Porto, Portugal)                                                                      |
| 4:25 pm | T16-124C | ABCA7 DYSFUNCTION IN MICROGLIAL BIOLOGY AND ALZHEIMER'S DISEASE<br>Jessie Premereur (Antwerp, Belgium)                                                                               |





| 4:26 | pm | T16-125C | <i>Irf</i> 5 modulates myelin-derived lipid processing and remyelination <b>Maria Domercq</b> (Leioa, Spain)                                                                    |
|------|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:27 | pm | T16-126C | Astrocytes and microglia: the mechanosensing side of the CNS power couple<br>Miguel R.G. Morais (Porto, Portugal)                                                               |
| 4:28 | pm | T16-127C | The role of microglia in 5xFAD/FAAH <sup>≁</sup> mice: an <i>in vivo</i> multiphoton microscopy and molecular study <b>María Andrea Arnanz</b> (Pozuelo de Alarcón, Spain)      |
| 4:29 | pm | T16-128C | GRN and C9orf72: converging disease mechanisms in human microglia<br><b>Paula Polanco Miquel</b> (ANTWERPEN, Belgium)                                                           |
| 4:30 | pm | T16-129C | The role of MHC-II in CNS remyelination<br>Jessica A. White (Belfast, UK)                                                                                                       |
| 4:31 | pm | T16-130C | An investigation of the behavioral changes induced by the conditional inactivation of 5-HT <sub>2B</sub> receptors on microglia cells <b>Marco Anzalone</b> (Odense C, Denmark) |
| 4:32 | pm | T16-131C | Deciphering the role of an astrocytic IncRNA in neuroinflammation<br><b>Ulrike Fuchs</b> (Göttingen, Germany)                                                                   |
| 4:33 | pm | T16-132C | Human iPSC glial co-culture chip model for studying neuroinflammation in vitro<br><b>lisa Tujula</b> (Tampere, Finland)                                                         |
| 4:34 | pm | T16-133C | Tackling the role of microglia in Multiple Sclerosis-associated cognitive impairment <b>Catarina Barros</b> (Lisboa, Portugal)                                                  |
| 4:35 | pm | T16-134C | Human pluripotent stem cell-based models establish the cellular neurotropism and neurovirulence of monkeypox virus<br>Lisa Bauer (Rotterdam, Netherlands)                       |
| 4:36 | pm | T16-135C | In vitro assay development for studying the interaction between microglia and myeloid cells in neuroinflammatory conditions <b>Estrid Thougaard Pedersen</b> (Odense, Denmark)  |





| 4:37 pm | T16-136C | Sex- and cell-type specific neuroimmune responses underlie demyelination<br>Chloe Lopez-Lee (New York, USA)                                                                                                                                             |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:38 pm | T16-137C | FGFR3 is Expressed in Mice and Humans Meissner Corpuscles: A Neural Autoantigen in Autoimmune Small Fiber Neuropathy Patients?<br>Efrat Shavit-Stein (Ramat Gan, Israel)                                                                                |
| 4:39 pm | T16-138C | Succinate receptor 1 (SUCNR1) signalling sustains microglial activation in CNS inflammation<br>Grzegorz Krzak (Cambridge, UK)                                                                                                                           |
| 4:40 pm | T16-139C | Rod microglia is associated to tau pathology in the Alzheimer's disease hippocampus<br>Juan Jose Fernandez-Valenzuela (Malaga, Spain)                                                                                                                   |
| 4:41 pm | T16-140C | Contribution of microglial β2 adrenergic signaling degeneration to Alzheimer's disease pathology<br>Linh H. Le (Rochester, USA)                                                                                                                         |
| 4:42 pm | T16-141C | Investigating the role of Clec7a in microglia function and assessing whether it may represent an early molecular target in Alzheimer Disease (AD)<br>Matthieu Prieur (Montpellier, France)                                                              |
| 4:43 pm | T16-142C | Deletion of GABA <sub>B</sub> receptors from oligodendrocyte precursor cells impairs blood-brain barrier function<br>Lipao Fang (Homburg, Germany)                                                                                                      |
| 4:44 pm | T16-143C | Effects of a gut-selective integrin-targeted therapy in mice exposed to early life immunostimulation (EIA): rescue of the social novelty deficit and of the expression of protective genes in hippocampus and cortex<br>Roberta De Simone (Rome, Italy) |
| 4:45 pm | T16-144C | The bidirectional relation between Corticosterone and Foxp3 <sup>+</sup> T Regulatory cell population in Major Depression-like Disorder<br>Inssaf Berkiks (capetown, South Africa)                                                                      |
| 4:46 pm | T16-145C | An <i>in vivo</i> model to study autoimmune encephalitis<br>Joanne Falck (Berlin, Germany)                                                                                                                                                              |
|         |          |                                                                                                                                                                                                                                                         |





| 4:47 pm | T16-146C | Microglia-mediated chronic neuroinflammation impairs neurogenesis<br>Alma N. Mohebiany (Antwerp, Belgium)                                                                                 |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:48 pm | T16-147C | SORLA impacts reactivity and response to pro-inflammatory stimulation of iPSC-derived microglia cells<br>Peter L. Ovesen (Berlin, Germany)                                                |
| 4:49 pm | T16-148C | Effects of Gestational and Lactational Exposure to Perfluorohexanoic Acid (PFHxA) on Cerebellum Development<br>Elizabeth Plunk (Rochester, USA)                                           |
| 4:50 pm | T16-149C | Modulation of glial inflammatory reactions by GPR55<br>Annika Hensel (Halle (Saale), Germany)                                                                                             |
| 4:51 pm | T16-150C | Profiling of MS microglia nodules reveals enriched propensity for lesion formation<br>Aletta van den Bosch (Amsterdam, Netherlands)                                                       |
| 4:52 pm | T16-151C | Endocytosis boost by the cholesterol-dependent cytolysin pneumolysin enhances inflammatory response<br>Asparouh I. Iliev (Bern, Switzerland)                                              |
| 4:53 pm | T16-152C | Enteric Glial Cells as a Possible Source of Myelin Antigen in Inflammatory Bowel Disorders and Multiple Sclerosis<br><b>Ryan Brown</b> (Charlottesville, USA)                             |
| 4:54 pm | T16-153C | Understanding the effect of neutrophil infiltration on microglia population after spinal cord injury<br>Andreia G. Pinho (Braga, Portugal)                                                |
| 4:55 pm | T16-154C | Cannabidiol induces autophagy in human microglia: relevance for its immuno-modulatory effect<br>Adriano M. Chaves (Fortaleza, Brazil)                                                     |
| 4:56 pm | T16-155C | Therapeutic modulation of solTNF-TNFR1 signaling selectively in microglia promotes remyelination in the cortical grey matter.<br>Athena Boutou (Athens, Greece)                           |
| 4:57 pm | T16-156C | Distinct astrocyte phenotype and transcription profiles associated with remyelination and demyelination in the cuprizone model of multiple sclerosis<br>Ilias Roufagalas (Athens, Greece) |





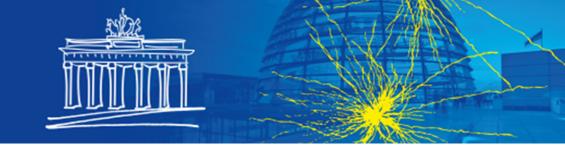
| 4:58 pm | T16-157C | Astrocytes exhibit morphological differences between female and male at 30 days post juvenile mTBI<br><b>Lea Hippauf</b> (Bordeaux Cedex, France)                                                                                                |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:59 pm | T16-158C | Elucidating microglia programs under PARK7/DJ-1-deficiency, a genetic cause of Parkinson's disease<br><b>Frida Lind-Holm Mogensen</b> (Luxembourg, Luxembourg)                                                                                   |
| 5:00 pm | T16-159C | TSPO is required for CGAS expression and function in human iPSC microglia-like cells<br>Maria Weinert (London, UK)                                                                                                                               |
| 5:01 pm | T16-160C | Psychostimulants and neuroinflammation: finding critical players in the crosstalk between glial cells and neurons<br>Joana Bravo (Porto, Portugal)                                                                                               |
| 5:02 pm | T16-161C | Effects of the cannabinoids 2-Arachidonylglycerol and WIN 55,212-2 on primary isolated astrocytic cultures and astrocytic-microglial co-cultures<br>Franziska Vieregge (Halle (Saale), Germany)                                                  |
| 5:03 pm | T16-162C | The Roles of NLRX1 in Regulation of TLR4-mediated Inflammation and Cell Death in Microglia.<br>Wan-Wan Lin (Taipei, Taiwan)                                                                                                                      |
| 5:04 pm | T16-163C | Inflammatory stimuli interfere with of myelin phagocytosis in macrophages via the Jak/STAT pathway<br>Lorenzo Romero-Ramírez (Toledo, Spain)                                                                                                     |
| 5:05 pm | T16-164C | Microglial aggregation and demyelinating cortical pathology in mouse<br>Trevor Owens (Odense C, Denmark)                                                                                                                                         |
| 5:06 pm | T16-165C | Induction and modulation of inflammatory responses in bi- and tri-cellular murine iPSC-derived neurospheroids<br>Julia Di Stefano (Antwerp, Belgium)                                                                                             |
| 5:07 pm | T17-010C | The presence of glia cells is required for the up-regulation of Na <sup>+</sup> currents as well as of Na <sup>+</sup> /K <sup>+</sup> -ATPases by thyroid hormone in cultures from postnatal rats<br>Irmgard D. Dietzel-Meyer (Bochum, Germany) |
| 5:08 pm | T17-011C | Tanycyte signal for Tanycyte/Neuron communication in Energy Balance regulation.<br><b>Rafik Dali</b> (Lausanne, Switzerland)                                                                                                                     |





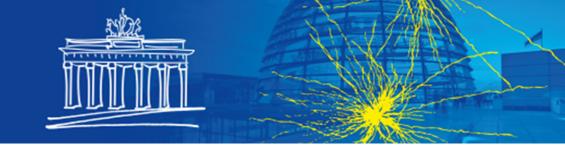
| 5:09 pm | T17-012C | Investigation of noradrenaline mediated glial wave induced motor arrest upon aversive stimulation<br>Mahalakshmi Dhanasekar (Paris, France)                                     |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:10 pm | T17-013C | Transmission of mechanical forces dictates astrocyte local stiffness and calcium dynamics, modulated by cell morphology<br><b>Miguel Fernández de la Torre</b> (Leganés, Spain) |
| 5:11 pm | T17-014C | Function of μ-crystallin expressing striatal astrocytes <i>in vivo</i><br>Matthias Ollivier (Los Angeles, USA)                                                                  |
| 5:12 pm | T17-015C | Focused Ultrasound for Glial Modulation Sophie V Morse (London, UK)                                                                                                             |
| 5:13 pm | T17-016C | Microglial contribution to neuronal network remodeling after paralysis onset<br>Fanny S. Martineau (Lausanne, Switzerland)                                                      |
| 5:14 pm | T17-017C | Oligodendrocyte TRPA1 regulates potassium siphoning and neuronal excitability<br>Nicola Hamilton-Whitaker (London, UK)                                                          |
| 5:15 pm | T17-018C | Calcium signaling in Astrocytes<br>Ahmad Jibai (Rotterdam, Netherlands)                                                                                                         |
| 5:16 pm | T17-019C | The astrocyte α1-adrenoreceptor is an essential component of the neuromodulatory system in mouse visual cortex.<br>Jérôme Wahis (Leuven, Belgium)                               |
| 5:17 pm | T18-006C | Deciphering the dynamic of cerebrovascular reactivity to hypercapnia and neurovascular coupling <b>Marine Tournissac</b> (Paris, France)                                        |
| 5:18 pm | T18-007C | Spatio-temporal dynamics of microglia phenotype in chronic hypertensive states<br>Lorena Morton (Magdeburg, Germany)                                                            |
| 5:19 pm | T18-008C | mRNA distribution and local translation sustain the postnatal molecular maturation of perivascular astrocytic processes <b>Anne-Cécile Boulay</b> (Paris, France)               |




| 5:20 pm | T18-009C | Sulfite oxidase in astrocyte mitochondria generates nitric oxide during brain hypoxia<br>Alexander Mascarenhas (London, UK)                                                                                  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:21 pm | T18-010C | Cross-talk between endothelial cells and macrophages through soluble factors<br>Valerie Petegnief (Barcelona, Spain)                                                                                         |
| 5:22 pm | T18-011C | Deletion of aquaporin-4 improves capillary blood flow distribution and intracranial pressure load after brain edema in awake mice<br>Luca Bordoni (Oslo, Norway)                                             |
| 5:23 pm | T20-033C | Acquisition of astroglial plasticity in the human cerebral cortex is pathology-dependent and mediated by injury-specific factors in the cerebrospinal fluid<br>Swetlana Sirko (Planegg-Martinsried, Germany) |
| 5:24 pm | T20-034C | The role of Nicotinamide in central nervous system re/myelination<br>Ioannis-Stefanos Kaplanis (Heraklion, Greece)                                                                                           |
| 5:25 pm | T20-035C | Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration<br>Venkat Krishnan Sundaram (Leipzig, Germany)                                                                          |
| 5:26 pm | T20-036C | Comparative Expression Analysis Reveals Cell Type-Specific Neuronal Injury-Responses<br>Frank Bosse (Duesseldorf, Germany)                                                                                   |
| 5:27 pm | T20-037C | Study of the role of Smoothened non-canonical signalling in oligodendroglia differentiation <b>Antonella Ragnini-Wilson</b> (Rome, Italy)                                                                    |
| 5:28 pm | T20-038C | Contribution of Platelets to Remyelination in Multiple Sclerosis<br>Francisco J. Rivera (Helsinki, Finland)                                                                                                  |
| 5:29 pm | T20-039C | Epigenetic priming in perivascular cells promotes fibrotic response after CNS injury<br>Anais Julien (Solna, Sweden)                                                                                         |
| 5:30 pm | T20-040C | Tamoxifen Attenuates Reactive Astrogliosis in the Xenopus Tadpole Optic Tectum Following Focal Impact Injury<br>Amy K. Sater (Houston, USA)                                                                  |

# XVI European Meeting on Glial Cells in Health and Disease Berlin | July 8–11, 2023




| 5:31 pm | 120-041C | Adaptive post-traumatic changes in the neurogenic niches of adult mouse brain are strongly dependent on the location of CNS injury and vary with increasing age<br>Chiara Marchesan (Planegg-Martinsried, Germany) |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:32 pm | T20-042C | Combination-Based Small Molecule Screening for Induced Oligodendrocyte Differentiation<br>Luke Lairson (La Jolla, USA)                                                                                             |
| 5:33 pm | T20-043C | Effects of the PPAR-y agonist pioglitazone on the microglia in different brain regions after traumatic brain injury in the rat<br>Petra Dolenec (Rijeka, Croatia)                                                  |
| 5:34 pm | T20-044C | Local cholesterol metabolism orchestrates remyelination Stefan A. Berghoff (Munich, Germany)                                                                                                                       |
| 5:35 pm | T20-045C | Schwann cells - endothelial cells interactions during the nerve regeneration inside a vein graft enriched with fresh skeletal muscle<br>Federica Zen (Orbassano, Italy)                                            |
| 5:36 pm | T20-046C | Changes in CNS extracellular matrix stiffness and its effects in human oligodendrocyte differentiation<br>Carmen Melendez-Vasquez (New York, USA)                                                                  |
| 5:37 pm | T20-047C | Pharmacogenomic screening identifies and repurposes small molecules for their pro-oligodendrogenic and pro-myelinating activities<br>Jean-Baptiste Huré (Paris, France)                                            |
| 5:38 pm | T20-048C | Leriglitazone protects oligodendrocytes and promotes myelination in demyelinating diseases.<br>Anna Vilalta (Mataró, Spain)                                                                                        |
| 5:39 pm | T20-049C | A novel protein involved in peripheral nerve injury: Regulator of G Protein Signalling 16 (RGS16)<br><b>Marina García Bejarano</b> (Orbassano (Torino), Italy)                                                     |
| 5:40 pm | T21-009C | Cell-intrinsic pathological characteristics in p.A53T-αSyn iPSC-derived astrocytes from Parkinson's disease patients<br>Christina Paschou (Athens, Greece)                                                         |
| 5:41 pm | T21-010C | Releasing mechanical stress as a major facilitator in glia-to-neuron reprogramming<br>Marcelo Salierno (London, UK)                                                                                                |






| 5:42 pm | T21-011C | Glia-to-glutamatergic neuron conversion in the mouse postnatal cerebral cortex<br>Laia Torres Masjoan (London, UK)                                                                                                    |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:43 pm | T21-012C | Glia and neurons from human iPSCs to address the pathology of Alzheimer´s disease<br>Juan Antonio Garcia Leon (Malaga, Spain)                                                                                         |
| 5:44 pm | T21-013C | Is it real? An investigation of astrocyte to oligodendrocyte reprogramming <i>in vitro</i><br>Justine Bajohr (Toronto, Canada)                                                                                        |
| 5:45 pm | T21-014C | Impact of the reactive cellular environment on glia-derived neurons in the injured adult mouse cortex<br>Catarina Fernandes (Mainz, Germany)                                                                          |
| 5:46 pm | T21-015C | SnRNAseq dissection of Neurog2-induced glia-to-neuron reprogramming indicates progressive acquisition of homeostatic gene expression responses to neuronal activity modulation.<br>Filippo Calzolari (Mainz, Germany) |
| 5:47 pm | T21-016C | Generation of functional neurons from adult human olfactory ensheathing glia by direct lineage conversion<br>Javier Sierra (Pozuelo de Alarcón, Spain)                                                                |
| 5:48 pm | T22-006C | Regional and Time difference in K <sup>+</sup> Clearance in Hippocampal Slices of Healthy and Epileptic Mice<br><b>Nariman Kiani</b> (Marseille, France)                                                              |
| 5:49 pm | T22-007C | Selective optical control of calcium signalling in astrocytes by Azobenzene photoswitches in vitro and ex-vivo.<br>Diletta Spennato (Bologna, Italy)                                                                  |
| 5:50 pm | T22-008C | Purinergic control of microglia- balancing survival, inflammation and death<br>Hanna Bielecka (Norwich, UK)                                                                                                           |
| 5:51 pm | T22-009C | Astrocytic intracellular chloride levels in functional hyperemia<br><b>Katharina F. Baumgart</b> (Copenhagen, Denmark)                                                                                                |
|         |          |                                                                                                                                                                                                                       |





5:52 pm T22-010C Regulation of the VRAC pore-forming subunit LRRC8A in the intrahippocampal kainic acid model of epilepsy Manolia Ghouli (Riverside, USA)





### S21 | Transcriptional control of myelination and repair

Chairs: Claire Jacob (Mainz, Germany)

- 4:00 pm S2101 Age-dependent epigenetic and transcriptomic regulation of remyelinating cells in the central nervous system **Sarah Moyon** (NYC, USA)
- 4:30 pm S2102 Role of promoter antisense RNAs in theregulation ofgenome organization and chromatin remodeling of Schwann cells Nikos Tapinos (Providence, USA)
- 5:00 pm S2103 A genetic compensatory mechanism modulates the expression of distinct class IIa HDACs to ensure peripheral nerve myelination and repair **Hugo Cabedo** (Sant Joan d'Alacant (Alicante), Spain)
- 5:30 pm S2104 Transcriptional control of regeneration in myelinating glia Claire Jacob (Mainz, Germany)





### S22 | Reprogramming glial cells into neurons: a new avenue for brain repair

Chairs: Christophe Heinrich (Bron, France)

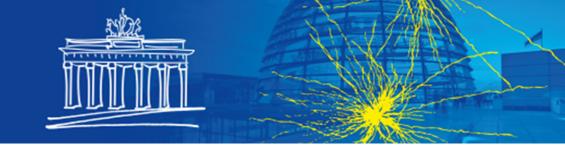
- 4:00 pm S2201 Human glia reprogramming into interneurons a therapeutic strategy for cell replacement? **Daniella Rylander Ottosson** (Lund, Sweden)
- 4:30 pm S2202 Reprogramming reactive glia into GABAergic interneurons: A new avenue to reduce seizures in Mesial Temporal Lobe Epilepsy Christophe Heinrich (BRON, France)
- 5:00 pm S2203 Dissecting the molecular framework underlying pericyte-to-neuron conversion Marisa Karow (Erlangen, Germany)
- 5:30 pm S2204 Engineering neural cell fates: the impact of cellular context on direct lineage reprogramming in vivo **Benedikt Berninger** (London, UK)





# S23 | Disentangling neuroinflammation and neurodegeneration using induced pluripotent stem cells: spotlight on glia

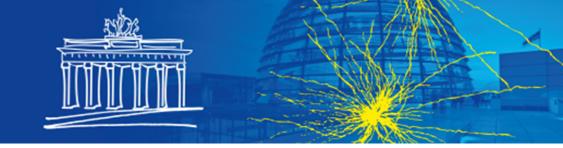
| Chairs:        | Reb   | ecca Matsas (Athens, Greece); Jari Koistinaho (Helsinki, Finland)                                          |  |
|----------------|-------|------------------------------------------------------------------------------------------------------------|--|
| Presentations: |       |                                                                                                            |  |
| 4:00 pm        | S2301 | Modelling neuroinflammation in vitro with iPS-microglia<br>Sally A. Cowley (Oxford, UK)                    |  |
| 4:30 pm        | S2302 | The impact of <i>PSEN1</i> ∆E9 mutation on iPSC-derived glial cells<br>Jari Koistinaho (Helsinki, Finland) |  |
| 5:00 pm        | S2303 | tba<br><b>Bart De Strooper</b> (Leuven, Belgium)                                                           |  |
| 5:30 pm        | S2304 | Targeting neuron-astrocyte interplay in Parkinson's disease <b>REBECCA MATSAS</b> (Athens, Greece)         |  |






# S24 | The many roles of microglia in brain development

| Ros            | a Chiara Paolicelli (Lausanne, Switzerland); Michela Matteoli (Pieve Emanuele (MI), Italy)                                                                                            |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Presentations: |                                                                                                                                                                                       |  |
| S2401          | Microglial Trem2 in the shaping of brain synapses and circuits <b>Michela Matteoli</b> (Rozzano, Italy)                                                                               |  |
| S2402          | Neuronal phospholipid scramblase Xkr8 guides neuron-microglia interaction in developing brain<br><b>Urte Neniskyte</b> (Vilnius, Lithuania)                                           |  |
| S2403          | Diversity of microglia in a model of perinatal inflammation<br><b>Pierre Gressens</b> (Paris, France)                                                                                 |  |
| S2404          | Dysfunctional microglia lacking TDP-43 influences the maturation of the motor-somatosensory cortex in the early postnatal brain <b>Rosa Chiara Paolicelli</b> (Lausanne, Switzerland) |  |
|                | ions:<br>S2401<br>S2402<br>S2403                                                                                                                                                      |  |






## S25 | Sculpting of neuronal circuit function by the structural plasticity of astrocytes

| Chairs:  | Min Zhou (Columbus, USA); Michelle Olsen (Blacksburg, USA) |                                                                                                                                                             |  |
|----------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Presenta | Presentations:                                             |                                                                                                                                                             |  |
| 4:00 pm  | S2501                                                      | BDNF Signaling onto Astrocyte TrkB.T1 Drives Astrocyte Structural Plasticity Supporting Glutamatergic Synaptogenesis<br>Michelle L. Olsen (Blacksburg, USA) |  |
| 4:30 pm  | S2502                                                      | Regional heterogeneity of astrocyte morphogenesis via formins modifies circuit function <b>Hyun Kyoung Lee</b> (Houston, USA)                               |  |
| 5:00 pm  | S2503                                                      | Anisotropic gap junctional coupling reflects tonotopic organization of neuronal circuitry in the auditory brainstem Jonathan Stephan (Düsseldorf, Germany)  |  |
| 5:30 pm  | S2504                                                      | Astrocyte syncytium shapes the plasticity of synaptic transmission<br>Min Zhou (Columbus, USA)                                                              |  |





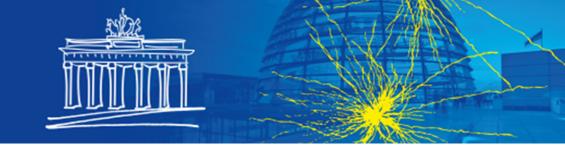
Tuesday, 11 July, 2023, 8:30 a.m. - 9:30 a.m.

### L06 | Plenary Lecture VI: Anne Schaefer

Chairs: David Lyons (Edinburgh, UK)

#### **Presentations:**

8:30 am L0601 The operational principles of neuron-microglia Anne Schaefer (New York, UK)






### S26 | Glia-Glia interaction in brain physiopathology

**Chairs:** Alexei Verkhratsky (Manchester, UK); Chenju Yi (Shenzhen, China) **Presentations:** S2601 Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development 10:00 am Chenju Yi (Shenzhen, China) 10:30 am S2602 Scar-forming severe reactive astrocytes as fibroblasts C Justin Lee (Daejeon, South Korea) Microenvironment in the brain after peripheral tumor metastases 11:00 am S2603 Mami Noda (Xi'an, China) S2604 Astrocytes regulate glial homeostatic and defensive capabilities of the brain active milieu 11:30 am Alexei Verkhratsky (Manchester, UK)





# S27 | Oligodendrocyte progenitor cell fates and interactions with neurons in the adult and developing brain

| Chairs:        | Akik  | Akiko Nishiyama (Storrs, USA); Enrica Boda (Orbassano, Italy)                                                                                                                            |  |  |
|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Presentations: |       |                                                                                                                                                                                          |  |  |
| 10:00 am       | S2701 | Dynamic extension of oligodendrocyte precursor cell processes toward active neurons in the hippocampus<br>Akiko Nishiyama (Storrs, USA)                                                  |  |  |
| 10:30 am       | S2702 | Refinement of developing circuits through synaptic phagocytosis by oligodendrocyte precursor cells<br>Lucas Cheadle (Cold Spring Harbor, USA)                                            |  |  |
| 11:00 am       | S2703 | Oligodendrocyte precursor cells guide cortical interneuron migration by unidirectional contact repulsion<br>Laurent Nguyen (Liège, Belgium)                                              |  |  |
| 11:30 am       | S2704 | Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage<br>Enrica Boda (Orbassano (Turin), Italy) |  |  |





# S28 | Lipid metabolism as major determinant of CNS remyelination

| Chairs:        | Gesine Saher (Goettingen, Germany); Jerome Hendriks (Hasselt, Belgium) |                                                                                                                                                             |  |
|----------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Presentations: |                                                                        |                                                                                                                                                             |  |
| 10:00 am       | S2801                                                                  | Local cholesterol and lipid metabolism orchestrate the repair of demyelinated lesions <b>Gesine Saher</b> (Goettingen, Germany)                             |  |
| 10:30 am       | S2802                                                                  | Myelin induced alterations in cellular lipid metabolism direct the reparative properties of microglia. <b>Jerome Hendriks</b> (Hasselt, Belgium)            |  |
| 11:00 am       | S2803                                                                  | Role of microglia and lipid metabolism in remyelination<br><b>Mikael Simons</b> (Munich, Germany)                                                           |  |
| 11:30 am       | S2804                                                                  | Lipoxin A <sub>4</sub> : a novel therapeutic strategy to dampen neuro-inflammation and boost remyelination in MS <b>Gijs Kooij</b> (Amsterdam, Netherlands) |  |





# S29 | Oligodendrocyte precursors shape brain circuits

Chairs: Xianshu Bai (Homburg, Germany)

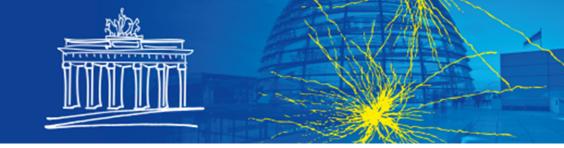
#### **Presentations:**

| 10:00 am | S2901 | Bi-directional communication of oligodendrocyte precursors with interneurons determines social cognition |
|----------|-------|----------------------------------------------------------------------------------------------------------|
|          |       | Xianshu Bai (Homburg, Germany)                                                                           |
|          |       |                                                                                                          |

10:30 am S2902 Early parvalbumin interneuron-OPC synapses sculpt cortical inhibition and behavior **Maria Cecilia Angulo** (Paris, France)

- 11:00 am S2903 Dysfunction of NG2 glia affects neuronal plasticity and behavior Christian Steinhäuser (Bonn, Germany)
- 11:30 am S2904 NG2 glia, GABA synapses, and beyond Xiaoping Tong (Shanghai, China)






### S30 | Glial senescence in neurodegeneration

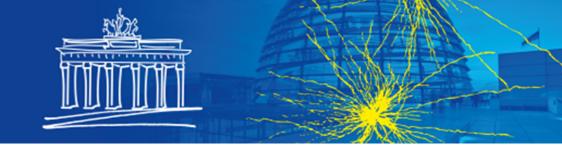
Chairs: Diego Gomez-Nicola (Southampton, UK)

- 10:00 am S3001 Dystrophic microglia in the human brain and their potential role in Alzheimer's disease Ingo Bechmann (Leipzig, Germany)
  10:30 am S3002 Replicative senescence in microglia in Alzheimer's disease Diego Gomez-Nicola (Southampton, UK)
  11:00 am S3003 tba Darren Baker (Rochester, USA)
- 11:30 am S3004 tba Maria Grazia Spillantini (Cambridge, UK)





Tuesday, 11 July, 2023, 12:45 p.m. - 1:45 p.m.


### L07 | Plenary Lecture VII: Michelle Monje

Chairs: Helmut Kettenmann (Berlin, Germany)

#### **Presentations:**

12:45 pm L07 Neuron-glial interactions in health and disease: from cognition ot cancer **Michelle Monje** (Stanford, USA)





**Closing | Closing** 

**Chairs:**